Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen
OPUS4-60 Bericht Bartz-Beielstein, Thomas; Branke, Jürgen; Mehnen, Jörn; Mersmann, Olaf Overview: Evolutionary Algorithms Evolutionary algorithm (EA) is an umbrella term used to describe population-based stochastic direct search algorithms that in some sense mimic natural evolution. Prominent representatives of such algorithms are genetic algorithms, evolution strategies, evolutionary programming, and genetic programming. On the basis of the evolutionary cycle, similarities and differences between these algorithms are described. We briefly discuss how EAs can be adapted to work well in case of multiple objectives, and dynamic or noisy optimization problems. We look at the tuning of algorithms and present some recent developments coming from theory. Finally, typical applications of EAs to real-world problems are shown, with special emphasis on data-mining applications 2015 urn:nbn:de:hbz:832-cos-777 Fakultät 10 / Institut für Informatik
OPUS4-34 Bericht Breiderhoff, Beate; Bartz-Beielstein, Thomas; Naujoks, Boris; Zaefferer, Martin; Fischbach, Andreas; Flasch, Oliver; Friese, Martina; Mersmann, Olaf; Stork, Jörg Simulation and Optimization of Cyclone Dust Separators Cyclone Dust Separators are devices often used to filter solid particles from flue gas. Such cyclones are supposed to filter as much solid particles from the carrying gas as possible. At the same time, they should only introduce a minimal pressure loss to the system. Hence, collection efficiency has to be maximized and pressure loss minimized. Both the collection efficiency and pressure loss are heavily influenced by the cyclones geometry. In this paper, we optimize seven geometrical parameters of an analytical cyclone model. Furthermore, noise variables are introduced to the model, representing the non-deterministic structure of the real-world problem. This is used to investigate robustness and sensitivity of solutions. Both the deterministic as well as the stochastic model are optimized with an SMS-EMOA. The SMS-EMOA is compared to a single objective optimization algorithm. For the harder, stochastic optimization problem, a surrogate-model-supported SMS-EMOA is compared against the model-free SMS-EMOA. The model supported approach yields better solutions with the same run-time budget. 2013 urn:nbn:de:hbz:832-cos-470 Fakultät 10 / Institut für Informatik