

 CIplus, Band 1/2012

 Thomas Bartz-Beielstein, Wolfgang Konen, Horst Stenzel, Boris Naujoks

A Gentle Introduction to Sequential
 Parameter Optimization

 Thomas Bartz-Beielstein, Martin Zaefferer

A Gentle Introduction to
Sequential Parameter Optimization
Thomas Bartz-Beielstein and Martin Zaefferer

Department of Computer Science,
Cologne University of Applied Sciences, Germany.

Schriftenreihe CIplus
TR 1/2012. ISSN 2194-2870

Abstract
There is a strong need for sound statistical analysis of simulation and

optimization algorithms. Based on this analysis, improved parameter set-
tings can be determined. This will be referred to as tuning. Model-based
investigations are common approaches in simulation and optimization.
The sequential parameter optimization toolbox SPOT package for R [5]
is a toolbox for tuning and understanding simulation and optimization
algorithms. The toolbox includes methods for tuning based on classical
regression and analysis of variance techniques; tree-based models such as
classification and regressions trees (CART) and random forest; Gaussian
process models (Kriging), and combinations of different meta-modeling
approaches. This article exemplifies how an existing optimization algo-
rithm, namely simulated annealing, can be tuned using the SPOT frame-
work.

1 Introduction
The performance of modern search heuristics such as evolution strategies (ES),
differential evolution (DE), or simulated annealing (SANN) relies crucially
on their parameterizations—or, statistically speaking, on their factor settings.
Finding good parameter settings for an optimization algorithm will be referred
to as tuning in the remainder of this article. This article illustrates how an
existing search heuristic can be tuned using the SPOT framework.

In order to keep the setup as simple as possible, we will use the simulated
annealing implementation, which is freely available in the R system [5]. This
implementation of the simulated annealing heuristic will be referred to as SANN
in the following.

The term algorithm design summarizes factors that influence the behavior
(performance) of an algorithm, whereas problem design refers to factors from

1

the optimization (simulation) problem. The initial temperature in SANN is one
typical factor which belongs to the algorithm design, the search space dimension
belongs to the problem design.

This paper is structured as follows. First, the optimization framework is
described in Sec. 2. This framework consists of three levels, which are useful for
distinguishing several problem domains. Section 3 provides some background
information about SANN. A simple example of tuning SANN is described in
Sec. 4. This tuning example can be used as a starting point for beginners.
SPOT’s file mode is discussed in Sec. 5. Section 6 presents a step-by-step walk
through the SPOT procedure. How SPOT can be applied to tune and analyze
arbitrary algorithms is demonstrated in Sec. 7. In contrast to all those non-
deterministic optimization problems, Sec. 8 explains what changes need to be
made if a deterministic problem has to be solved with SPOT. Finally, a short
summary is presented in Sec. 9.

2 Levels during the Tuning Procedure
When tuning an optimization algorithm, the following three levels can be used
to describe the experimental setup (Fig. 1).

(L1) The real-world system. This system allows the specification of an objective
function, say f . As an example, we will use the sphere function in the
following.

(L2) The optimization algorithm, here SANN. It requires the specification of
algorithm parameters.

(L3) The tuning algorithm, here SPOT.

An optimization algorithm (L2) requires parameters, e.g., the initial temper-
ature of SANN or the mutation rate of ES. These parameters determine the
performance of the optimization algorithms. Therefore, they should be tuned
to get better performance for one algorithm. The algorithm is in turn used to
determine optimal values of the objective function f from level (L1).

2

Objective Function
L1

Optimization Algorithm
L2

Tuning Algorithm
L3

SPOT

Simulated Annealing

Sphere Function

Figure 1: The three levels that occur while tuning an algorithm that optimizes a
test function.

3 Simulated Annealing SANN
Simulated annealing is a generic probabilistic heuristic for global optimiza-
tion [4]. The name comes from annealing in metallurgy. Controlled heating
and cooling of a material reduces defects. Heating enables atoms to leave their
initial positions (which are local minima of their internal energy), and controlled
cooling improves the probability to find positions with lower states of internal
energy than the initial positions. The SANN algorithm replaces the current so-
lution with a randomly generated new solutions. Better solutions are accepted
deterministically, where worse solutions are accepted with a probability that
depends on the difference between the corresponding function values and on
a global parameter, which is commonly referred to as the temperature. The
temperature is gradually decreased during the optimization.

We consider the R implementation of SANN, which is available via the
general-purpose optimization function optim() from the stats package in the
R system. The function optim() is parametrized as follows
> optim(par, fn, gr = NULL, ...,
+ method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
+ lower = -Inf, upper = Inf,
+ control = list(), hessian = FALSE)

Here, par denotes initial values for the parameters to be optimized over. Note,
the problem dimension it specified by the length of this vector, so par=c(1,1,1,1)
denotes a four-dimensional optimization problem. fn is a function to be mini-
mized (or maximized), with first argument the vector of parameters over which
minimization is to take place. gr defines a function to return the gradient for
the "BFGS", "CG" and "L-BFGS-B" methods. If it is NULL, a finite-difference
approximation will be used. For the "SANN" method it specifies a function to
generate a new candidate point. If it is NULL a default Gaussian Markov kernel
is used. The symbol . . . represents further arguments (optional) that can be be

3

passed to fn and gr. method denotes the optimization method to be used. We
will use SANN in our examples. lower, upper specify bounds on the variables
for the "L-BFGS-B" method, or bounds in which to search for method "Brent".
So, we will not use these variables in our examples. control defines a relatively
long list of control parameters. We will use the following parameters from this
list: maxit, i.e., the maximum number of iterations, which is for SANN the
maximum number of function evaluations. This is the stopping criterion. temp
controls the SANN algorithm. It is the starting temperature for the cooling
schedule with a default value of 10. Finally, we will use tmax, which is the
number of function evaluations at each temperature for the SANN method. Its
default value is also 10.

Before SANN can be started, the user has to specify an objective function
f . To keep things as simple as possible, the sphere function will be used:
> sphere <- function (x){
+ sum(x^2)
+ }

To obtain reproducible results, we will set the seed.
> set.seed(123)

Using a three-dimensional objective function and the starting point (initial
values for the parameters to be optimized over) (−1, 1,−1), we can execute the
optimization runs as follows:
> res <- optim(c(-1,1,-1), sphere, method="SANN",
+ control=list(maxit=100, temp=10, tmax = 10))
> res

$par
[1] -0.3209798 0.6608565 0.4414664

$value
[1] 0.7346519

$counts
function gradient

100 NA

$convergence
[1] 0

$message
NULL

The best, i.e., smallest, function value, which was found by SANN, reads
0.7346519. The corresponding point in the search space is approximately (-
0.3209798, 0.6608565, 0.4414664). No gradient information was used and one
hundred function evaluations were performed. The variable convergence is an
integer code, and its value 0 indicates successful completion of the SANN run.
No additional message is returned.

4

Now that we have performed a first run of the SANN algorithm on our
simple test function, we are interested in improving SANN’s performance. The
SANN heuristic requires some parameter settings, namely temp and tmax. If
these values are omitted, a default value of ten is used. The questions is: Are the
default algorithm parameter settings, namely temp =10 and tmax=10, adequate
for SANN or can these values be improved? That is, we are trying to tune the
SANN optimization algorithm.

A typical beginner in algorithm tuning would try to improve the algorithm’s
performance by manually increasing or decreasing the algorithm parameter val-
ues, e.g., choosing temp = 20 and tmax= 5. This procedure is very time con-
suming and does not allow efficient statistical conclusions. Therefore, we will
present a different approach, which uses the SPOT.

Although the setup for the tuning procedure with SPOT is very similar to
the setup discussed in this section, it enables deeper insights into the algorithm’s
performance.

4 Tuning with SPOT: A First Example
4.1 The Objective Function (L1): Sphere
To keep the situation as simple as possible, we will use the sphere test function
again:

f(x) =
n∑

i=1
x2

i

SANN will be used to determine its minimum function value. As above, the
sphere function is defined as
> sphere <- function(x){
+ sum(x^2)
+ }

4.2 The Optimization Algorithm (L2): SANN
Again, several settings have to be specified for the algorithm to be tuned. The
problem design requires the specification of the starting point for the search.
Note, its length defines the problem dimension.
> x0 <- c(-1,1,-1) #starting point that SANN uses when optimizing sphere()

Since x0 has three elements, we are facing a three dimensional optimization
problem. The budget, i.e., the maximum number of function evaluations that
can be used by SANN is specified via
> maxit <- 100

As above, the SANN implementation from the R system will be used via
the optim() function. We will consider two parameters: the initial temperature
(temp) and the number of function evaluations at each temperature (tmax). Both

5

Table 1: SANN parameters. The first two parameters belong to the algorithm
design, whereas the remaining parameters are from the problem design. Note,
the starting point defines the problem dimension, i.e., by specifying a three di-
mensional starting point the problem dimension is set to three. If no seed is
specified, 1234 is used as the default seed value. SPOT uses two random seeds:
the first is used by SPOT itself, e.g., for generating randomized designs. The
second is used by the algorithm

Name Symbol Factor name
Initial temperature t temp
Number of function evalua-
tions at each temperature

tmax tmax

Starting point ~x0 = (−1, 1,−1) x0
Problem dimension n = 3
Objective function sphere sphere()
Quality measure Expected performance, e.g.,

E(y)
y

Initial seed s 1234
Budget maxit = 100 maxit

are integer values. To interface with SPOT, a wrapper function spot2Sann()
can be defined as follows.
> spot2Sann <- function(pars,x0,fn,maxit){
+ temp<-pars[1]
+ tmax<-pars[2]
+ y <- optim(x0, fn, method="SANN", control=list(maxit=maxit, temp=temp, tmax=tmax))
+ return(y$value)
+ }

Note, as explained in Sect. 3,
optim(x0, fn, method="SANN", control=list(maxit=maxit, temp=temp, tmax=tmax))

is the standard way for starting SANN as an R optimizer. All parameters and
settings of SANN as used for this simple example are summarized in Table 1.

4.3 The Tuning Procedure (L3): SPOT
The SPOT package can be installed from within R using the
> install.packages("SPOT")

command. Alternatively, SPOT can downloaded from the comprehensive R
archive network at http://CRAN.R-project.org/package=SPOT. The latter
procedure is recommended for the experienced R user only. SPOT is one possi-
ble implementation of the sequential parameter optimization (SPO) framework
introduced in [1]. For a detailed documentation of the functions from the SPOT
package, the reader is referred to the package help manuals.

6

SPOT has to be loaded to the workspace and a region of interest (ROI)
has to be defined. The ROI specifies SPOT’s search intervals for the SANN
parameters, i.e., for tmax and temp.
> require(SPOT)
> roi<-spotROI(c(1,1),c(100,100),type=c("INT","INT"))

Here, both parameters temp and tmax will be tuned in the region between one
and 100.

Finally, before calling SPOT, the tuning procedure has to be configured.
This is done by setting up a config list. Here, we specify information about
the initial design size (init.design.size=4) and the number of meta models
which are build by SPOT (auto.loop.steps=5). More configurations can be
chosen, but remain at default values for this simple example.
> config<-list(alg.func=spot2Sann,
+ alg.roi=roi,
+ init.design.size=4,
+ auto.loop.steps=5)

Now we are ready to start SPOT via spot().
> res<-spot(spotConfig=config,x0=x0,fn=sphere,maxit=maxit)

spot.R::spot started

4.4 Results
Output from the SPOT run is stored in the res variable which is a list. Results
from each SANN evaluation are stored in the res$alg.currentResult element.

> str(res$alg.currentResult)

'data.frame': 53 obs. of 9 variables:
$ Function: Factor w/ 1 level "UserSuppliedFunction": 1 1 1 1 1 1 1 1 1 1 ...
$ XDIM : num 2 2 2 2 2 2 2 2 2 2 ...
$ YDIM : int 1 1 1 1 1 1 1 1 1 1 ...
$ STEP : num 0 0 0 0 0 0 0 0 1 1 ...
$ SEED : num 1234 1235 1234 1235 1234 ...
$ CONFIG : int 1 1 2 2 3 3 4 4 5 5 ...
$ VARX1 : num 100 100 54 54 2 2 40 40 11 11 ...
$ VARX2 : num 43 43 99 99 57 57 7 7 57 57 ...
$ Y : num 3 2.964 3 2.964 0.176 ...

SPOT generates many information which can be used for a statistical anal-
ysis. For example, the best configuration found can be displayed as follows.
> best <- res$alg.currentBest[nrow(res$alg.currentBest),]
> print(best)

Y VARX1 VARX2 COUNT CONFIG STEP
32 0.1578842 2 57 4 3 6

7

0.5

1.0

1.5

2.0

2.5

●

20 40 60 80 100

20

40

60

80

100

VARX1

V
A

R
X

2

Figure 2: Contour plot of the last meta model (Random Forest) used by the
SPOT run when tuning SANN. VARX1 is temp, VARX2 is tmax.

Results can also be used to illustrate the algorithm’s performance. Several
pre-defined report functions come with SPOT, e.g., the spotReportContour,
which generates the contour plot from Fig. 2.
> spot(spotConfig=append(list(
+ report.func="spotReportContour",
+ report.interactive=F),
+ res),
+ spotTask="rep")

5 SPOT File Mode
SPOT can be run in two different modes1:

• File mode enabled: Information are stored in several files, which allow an
extensive analysis. Preferred mode, if SPOT is used interactively or if the
run is expected to take rather long.

• File mode disabled: Should be used to improve performance. Basically, a
good choice when final results are important.

The file mode only concerns the SPOT output. These files will be referred to
as output files. Regardless of the chosen file mode, the user can select either to
provide the SPOT settings and parameters as R variables in the workspace, or
to provide everything in files. These files will be referred to as input files.

In this section it is explained how to use SPOT using input and output files.
For this purpose, the same setup as in the previous section will be used.

1This section contains advanced material and can be skipped during the first reading.

8

5.1 Enabling and Disabling SPOT’s File Mode
SPOT can be run without generating any output to the file system. The variable
spot.fileMode can be used to change SPOT’s basic I/O behavior. The user
can change its value in SPOT’s configuration list as follows.
> config<-list(alg.func=spot2Sann, alg.roi=roi, init.design.size=4, auto.loop.nevals=20,
+ spot.fileMode = FALSE)

Using this setting, SPOT will only use the workspace to store variables.

5.2 File structure used in SPOT
SPOT files use a naming convention, which allows the definition of projects.
Each configuration file belongs to one SPOT project, if the same basename is
used for corresponding files. SPOT uses simple text files as interfaces from the
algorithm to the statistical tools.

1. The user can provide the following input files:

(i) Region of interest (ROI) files specify the region over which the al-
gorithm parameters are tuned. Categorical variables such as the
recombination operator in ES, can be encoded as factors, e.g., “in-
termediate recombination” and “discrete recombination.”

(ii) Algorithm design (APD) files are used to specify parameters used by
the algorithm, e.g., problem dimension, objective function, starting
point, or initial seed. APD files are not mandatory if custom target
functions are used.

(iii) Configuration files (CONF) specify SPOT specific parameters, such
as the prediction model or the initial design size. If the file mode is
disabled, this information is stored directly in the config variable.

2. SPOT will generate the following output files (if spot.fileMode is set to
TRUE):

(i) Design files (DES) specify algorithm designs. They are generated
automatically by SPOT and will be read by the optimization algo-
rithms.

(ii) After the algorithm has been started with a parametrization from
the algorithm design, the algorithm writes its results to the result
file (RES). Result files provide the basis for many statistical evalua-
tions/visualizations. They are read by SPOT to generate prediction
models. Additional prediction models can easily be integrated into
SPOT.

(iii) In each sequential step, the best result will be stored in a best file
(BST). This is in essence a product of the RES file, providing easy
access to progress information.

9

5.3 SPOT Configuration
A configuration (CONF) file stores information about SPOT specific settings.
These are the same settings that can be provided to spot in a list variable, as
described in the second part of section 4.3. All settings not specified in the file
(or list) will be set to default values.

For example, the number of SANN algorithm runs, i.e., the available bud-
get, can be specified via auto.loop.nevals. SPOT implements a sequential
approach, i.e., the available budget is not used in one step. Evaluations of the al-
gorithm on a subset of this budget, the so-called initial design, is used to generate
a coarse grained meta model F . This meta model is used to determine promising
algorithm design points which will be evaluated next. Results from these addi-
tional SANN runs are used to refine the meta model F . The size of the initial
design can be specified via init.design.size. To generate the meta model, we
use random forest [3]. This can be specified via seq.predictionModel.func =
"spotPredictRandomForest".

Random forest was chosen, because it is a robust method which can handle
categorical and numerical variables.

5.3.1 Setup of the CONF for the SANN

The corresponding CONF file for the SANN contains the following lines.

File: sannExample.conf:

alg.func = function(pars){
temp<-pars[1]
tmax<-pars[2]
y <- optim(x0, fn, method="SANN",
control=list(maxit=maxit, temp=temp, tmax=tmax))
return(y$value)
}
spot.fileMode=TRUE
auto.loop.steps = 5
init.design.size = 4

As can be seen from this example, the setup of the CONF file is very simple.
Most basically, it requires the specification of the function call to the algorithm,
which should be tuned. Additionally, the file mode, the number of sequential
steps and the initial design size are specified.

One difference between the wrapper used here, and in the previous example
is that settings like the budget and the target function of SANN are not directly
passed to the function, but are handled in the global environment of R. This
way, they can be defined in an APD file (see Sec. 5.5).

10

5.3.2 An Extended CONF File

The setup used in this introductory example is based on a very simply configura-
tion. More options can be specified. Simply execute help with spotGetOptions
as an argument, i.e.,
> help(spotGetOptions)

For example, a more extensive CONF file might looks as follows.
alg.func = function(pars){
temp<-pars[1]
tmax<-pars[2]
y <- optim(x0, fn, method="SANN",
control=list(maxit=maxit, temp=temp, tmax=tmax))
return(y$value)
}
alg.seed = 1235
auto.loop.steps = Inf;
auto.loop.nevals = 100;
init.design.func = "spotCreateDesignLhs";
init.design.size = 10;
init.design.repeats = 2;
io.columnSep = " ";
seq.design.maxRepeats = 10;
seq.design.size = 100
seq.predictionModel.func = "spotPredictRandomForest"
spot.fileMode=TRUE
spot.seed = 125
report.func = "spotReportSens"
report.io.pdf = TRUE

The settings can be explained as shown in Table 2. There are more settings
available, and explained in the help document mentioned above. They will be
used with default values if not specified.

5.4 The Region of Interest
A region of interest (ROI) file specifies algorithm parameters and associated
lower and upper bounds for the algorithm parameters.

• Values for temp are chosen from the interval [1; 100].

• Values for tmaxare from the interval [1; 100].
The corresponding ROI file looks as follows.

File: sannExample.roi:
name low high type
TEMP 1 100 INT
TMAX 1 100 INT

11

Table 2: SPOT configuration

alg.func Specify the name of the algo-
rithm to be tuned

STRING

alg.seed Seed passed to the algorithm INT
auto.loop.steps SPOT Termination criterion.

Number of meta models to be
build by SPOT

INT

init.design.func Name of the function to cre-
ate an initial design

STRING

init.design.size Number of initial design
points to be created

INT

init.design.repeats Number of repeats for each
design point from the initial
design

INT

seq.design.maxRepeats Maximum number of repeats
for design points

INT

seq.design.size Number of design points eval-
uated by the meta model

INT

seq.predictionModel.func Meta model STRING
spot.seed Seed used by SPOT, e.g., for

generating LHD
INT

report.func Name of the report function STRING
report.io.pdf Write report to pdf BOOLEAN

5.5 The Algorithm and Problem Design File
Parameters related to the algorithm or the optimization problem are stored in
the APD file. This file contains information about the problem and might be
used by the algorithm. For example, the starting point x0 = (-1,1,-1) can be
specified in the APD file.

File: sannExample.apd:

assign("x1", c(-1,1,-1), envir = .GlobalEnv)
assign("maxit", 100, envir = .GlobalEnv)
assign("fn", function(x){sum(x^2)}, envir = .GlobalEnv)

The variables have to be assigned to the global environment, to make sure
that they are available for the wrapper function defined in the CONF file.
It is not mandatory to use an APD file (for an alternative, see the simple
example in the previous Sec. 4). However, it might help to clearly specify the
problem settings. The APD file provides a nice way to look up settings of past
experiments.

12

5.6 Running SPOT—Automatic Tuning of SANN
Now that the interface to SANN has been defined, and the experimental setup
has been specified, the SPOT run can be performed. Consider the following
situation: The user has created a working directory for running the experiments,
say myspot, which is a subfolder of his Documents folder. This directory contains
the following files.

• SPOT configuration (sannExample.conf),

• Region of interest (sannExample.roi),

• Algorithm and problem parameters (sannExample.apd)

R should be started in the myspot directory. You can use R’s menu to change
the working directory. Alternatively, you can set the working directory using
the R command:
> setwd("c:/users/yourname/documents/myspot")

Sometimes is it required to start a clean R session, because data from previous
runs are in the workspace. Execute
> rm(list=ls());

to perform a cleanup before SPOT is loaded and run. We are using the config-
uration file sannExample.conf to start SPOT’s automatic tuning procedure.
> library(SPOT)
> res<-spot("sannExample.conf")

spot.R::spot started

> best <- res$alg.currentBest[nrow(res$alg.currentBest),]
> print(best)

Y VARX1 VARX2 COUNT CONFIG STEP
32 0.1578842 2 57 4 3 6

As can be seen, the result is the same as in the simple example without files.
Since spot.fileMode=TRUE is set, a result file (RES), which contains im-

portant information from the tuning process, has been written to the working
directory, as well as a BST and DES file. They have the same name as the
configuration file but different file extensions, according to their type.

• Results of each evaluation of the algorithm (SANN) (sannExample.res),

• Best values from each sequential step of SPOT (sannExample.bst),

• Last design as planned by SPOT (sannExample.des)

13

6 A Step-by-step Walk through
Previous examples showed how SPOT can be used for automated tuning. Addi-
tionally, it can also be used in a step-by-step manner. This section demonstrates
the different options in detail.

6.1 Sequential Steps
SPOT sequentially performs the following steps during a tuning process.

1. Init: The initial design is generated. If spot.fileMode is enabled, the
resulting design is written to the design file.
> res<-spot(spotConfig=config,x0=x0,fn=sphere,maxit=maxit,spotTask="init")

2. Run: Using the parameters from the design file, the algorithm is run. If
spot.fileMode is enabled, the resulting design is written to the result file.
> res<-spot(spotConfig=config,x0=x0,fn=sphere,maxit=maxit,spotTask="run")

3. Seq: Using data from the result file, a meta model is generated. This
model is used to determine additional design points, which are written to
the design file, if spot.fileMode is enabled.
> res<-spot(spotConfig=config,x0=x0,fn=sphere,maxit=maxit,spotTask="seq")

4. Report. A report is generated.
> spot(spotConfig=append(list(report.func="spotReportContour",report.interactive=F),res),
+ spotTask="rep")

In an automated SPOT run (i.e. spotTask="auto"), step two and three are
repeated as long as no stopping criterion is fulfilled. Only when a stopping
criterion is fulfilled, the fourth step is executed. In the step-by-step procedure,
the user can choose to create reports at any point, and continue with more
tuning steps afterwards.

6.2 Running SPOT automatically
SPOT can execute the tasks init → run → seq → run → seq → . . . until the
budget, which is specified via auto.loop.nevals, is exhausted. This automatic
mode is SPOT’s default mode. It can be explicitly set via
> res<-spot(spotConfig=config,x0=x0,fn=sphere,maxit=maxit,spotTask="auto")

The call without any argument to the spotTask variable
> res<-spot(spotConfig=config,x0=x0,fn=sphere,maxit=maxit)

leads to exactly the same result.

14

6.3 The Simple Example Revisited—Step-by-step
We will use the example from Sec. 4 to illustrate the four steps (init, run, seq,
and rep), which were used by SPOT.

> sphere <- function(x){
+ sum(x^2)
+ }
> x0 <- c(1,-1,1) #starting point that \SANN uses when optimizing sphere()
> maxit <- 100 #number of evaluations of sphere() allowed for SANN
> spot2Sann <- function(pars,x0,fn,maxit){
+ temp<-pars[1]
+ tmax<-pars[2]
+ y <- optim(x0, fn, method="SANN",
+ control=list(maxit=maxit,
+ temp=temp, tmax=tmax))
+ return(y$value)
+ }
> require(SPOT)
> roi<-spotROI(c(1,1),c(100,100),type=c("INT","INT"))
> config<-list(alg.func=spot2Sann,
+ alg.roi=roi,
+ init.design.size=10,
+ auto.loop.nevals=20,
+ spot.fileMode=T
+)

Now, we will execute the first step (init) only.
> res<-spot(spotConfig=config,x0=x0,fn=sphere,maxit=maxit,spotTask="init")

spot.R::spot started

The initial design can be visualized as follows.
> x.des<-res$alg.currentDesign$VARX1
> y.des<-res$alg.currentDesign$VARX2
> plot(y.des ~ x.des, type="p")

15

●

●

●

●

●

●

●

●

●

●

20 40 60 80

20
40

60
80

x.des

y.
de

s

Based on these design points, SPOT will run the algorithm. The results of
the algorithms runs can then be accessed.
> res<-spot(spotConfig=res,x0=x0,fn=sphere,maxit=maxit,spotTask="run")

spot.R::spot started

> df.res <-res$alg.currentResult
> print(df.res)

Function XDIM YDIM STEP SEED CONFIG VARX1 VARX2 Y
1 UserSuppliedFunction 2 1 0 1234 1 71 95 3.0000000
2 UserSuppliedFunction 2 1 0 1235 1 71 95 0.4653657
3 UserSuppliedFunction 2 1 0 1234 2 11 90 0.3945913
4 UserSuppliedFunction 2 1 0 1235 2 11 90 0.2432183
5 UserSuppliedFunction 2 1 0 1234 3 70 39 1.5021431
6 UserSuppliedFunction 2 1 0 1235 3 70 39 0.4653657
7 UserSuppliedFunction 2 1 0 1234 4 58 13 3.0000000
8 UserSuppliedFunction 2 1 0 1235 4 58 13 0.4653657
9 UserSuppliedFunction 2 1 0 1234 5 94 45 3.0000000
10 UserSuppliedFunction 2 1 0 1235 5 94 45 0.4653657
11 UserSuppliedFunction 2 1 0 1234 6 9 25 0.4996259
12 UserSuppliedFunction 2 1 0 1235 6 9 25 1.8288022
13 UserSuppliedFunction 2 1 0 1234 7 30 51 0.6428562
14 UserSuppliedFunction 2 1 0 1235 7 30 51 0.4653657
15 UserSuppliedFunction 2 1 0 1234 8 83 64 1.4493019

16

16 UserSuppliedFunction 2 1 0 1235 8 83 64 0.4653657
17 UserSuppliedFunction 2 1 0 1234 9 37 5 3.0000000
18 UserSuppliedFunction 2 1 0 1235 9 37 5 1.4660851
19 UserSuppliedFunction 2 1 0 1234 10 45 72 3.0000000
20 UserSuppliedFunction 2 1 0 1235 10 45 72 0.4653657

We can use results from the first run to generate a report.
> spot(spotConfig=append(list(
+ report.func="spotReportContour",
+ report.interactive=F),
+ res),
+ spotTask="rep")

Or else we can use more steps, to continue tuning the algorithm
> res<-spot(spotConfig=res,x0=x0,fn=sphere,maxit=maxit,spotTask="seq")
> res<-spot(spotConfig=res,x0=x0,fn=sphere,maxit=maxit,spotTask="run")
> res<-spot(spotConfig=res,x0=x0,fn=sphere,maxit=maxit,spotTask="seq")
> res<-spot(spotConfig=res,x0=x0,fn=sphere,maxit=maxit,spotTask="run")

If this is done, the results are comparable to the automated tuning, unless
the user modifies some variables. And this is where one of the main advantages
of the step-by-step procedure comes in. The user can decide to alter the next
design, instead of simply using what the "seq" step suggests. The user can try
to remove outliers which are visible to him from the results of the "run" step. Or
he might decide to change SPOT settings like the used meta model during the
tuning, for instance switching from a simple linear model to a more advanced
Kriging model. It might even be reasonable to change the region of interest, if
the user observes that another region might be more interesting for the tuning
procedure.

In contrast to the automated tuning, the step-by-step approach allows for
user knowledge to be taken into consideration. Of course this needs more ex-
pertise of the user, but can potentially improve results significantly.

7 Interfacing SPOT: An Extended Example
The earlier sections described how to use SPOT in different ways to tune func-
tions or algorithms in R. However, often algorithms are already implemented in
other programing languages.

Therefore, this section illustrates how SPOT can be used for tuning and
analyzing an arbitrary algorithm, which is executed with a call to the system
command line. As an example, a simple evolution strategy implemented in
JAVA will be used, namely the (1+1)-ES.

The (1+1)-ES creates one offspring by mutation in each generation. If the
offspring is better than the parent, it will become the next generations parent.
This strategy has an internal step size used for mutation. The step size is
multiplied with the step size multiplier if the success rate is higher than 1

5 , and
divided by the step size multiplier if it is smaller. If it is exactly 1

5 , it remains
unchanged.

For this strategy, three parameters can be varied:

17

1. initial step size - Initial value for the step size.
2. step size multiplier - Parameter for the step size adaption.
3. history length - The number of past steps considered for calculation of the

success rate.

7.1 Problem Definition
As earlier described for SANN, the first step is to define the problem to be
solved. Here, the problem is to tune the (1+1)-ES on the two dimensional
sphere function (called "Ball" in the JAVA code). The starting point is chosen
as (-2,3), and the (1+1)-ES has a budget of 100 evaluations on the sphere
function to find the optimum.
> #choose target function which is defined in the java code
> fn<-"de.fhkoeln.spot.objectivefunctions.Ball"
> #dimension of target function
> n=2
> #starting point that the (1+1)-ES uses when optimizing the target functino
> xp0 <- "[-2.0,3.0]"
> px <- 0 #individual printing mode
> py <- 1 #objective function value printing mode
> #stopping criterion: budget of (1+1)-ES
> steps <- 100
> #stopping criterion: minimum value
> target <- 1e-20
> #seed to be passed to the algorithm
> alg.seed <<- 1

7.2 Interfacing with SPOT
The second step is now to define a wrapper function to be called by SPOT,
which will in turn call the JAVA code. The .jar file of the JAVA code used here
has to be in the current working directory.
> spot2opoes <- function(pars,f,n,xp0,px,py,steps,target){
+ sigma0<-pars[1] #initial step size
+ a<-pars[2] #step size muliplier
+ g<-round(pars[3]) #history length, has to be integer!
+ alg.seed<<-alg.seed+1
+ #Note: the used jar file has to be in the current working directory (see also: setwd(), getwd())
+ callString <- paste("java -jar simpleOnePlusOneES.jar"
+ , alg.seed, steps, target, f, n, xp0, sigma0, a, g, px, py, sep = " ")
+ print(callString)
+ y <-system(callString, intern= TRUE) #evaluate callstring
+ return(as.numeric(as.character(y))) #return as numeric
+ }

7.3 Configuring and Running SPOT
The parameters have to be assigned to a region of interest, in which they are
tuned. Here, the first two parameters are floats (initial step size and step size
multiplier), the third is an integer (i.e. history length).
> require(SPOT)
> roi<-spotROI(c(0.1,1,2),c(5,2,100),type=c("FLOAT","FLOAT","INT"))

18

Finally, SPOT can be configured and started. A Kriging model is selected
for the sequential model optimization. With this setting, new design points will
be found by applying Covariance Matrix Adaption Evolution Strategy ("cmaes")
to the build model.
> config<-list(alg.func=spot2opoes,
+ alg.roi=roi,
+ seq.predictionModel.func="spotPredictForrester",
+ seq.predictionOpt.func="spotPredictOptMulti",
+ seq.predictionOpt.method="cmaes",
+ seq.predictionOpt.budget=1000,
+ report.func="spotReportSens",
+ spot.fileMode=F,
+ io.verbosity=3,
+ auto.loop.nevals=100)
> spotResults<-spot(spotConfig=config,f=fn,n=n,xp0=xp0,px=px,py=py,steps=steps,target=target)

The results of this tuning run are stored in the spotResults variable, and can
be processed for further analysis. Also, the "spotReportSens" Report function
will present a small summary of influence and performance of the different tuned
parameters.

8 Deterministic Problems
Previous sections discussed the tuning of non-deterministic, i.e., noisy, algo-
rithms, which is the usual case when tuning evolutionary algorithms. After
going through these examples in the previous sections, this section presents an
application of SPOT in a simple setting: We will describe how SPOT can be
used for tuning deterministic algorithms. To present a very simple example,
SPOT will be used for minimizing the sphere function. Level (L2) from Fig. 1
is omitted, and the tuning algorithm for level (L3) is applied directly to the
real-world system on level (L1). So instead of tuning SANN, which in turn
optimizes the sphere function, SPOT tries to find the minimum of the sphere
function directly. This example illustrates necessary modifications of the SPOT
configuration in deterministic settings. Since no randomness occurs, repeats or
other mechanism to cope with noise are not necessary anymore.

The sphere function is defined as usual:
> sphere <- function(x){
+ sum(x^2)
+ }

SPOT requires an ROI. The interval [−5; 5]× [−5; 5] was chosen as the region
of interest, i.e., we are considering a two-dimensional optimization problem.
> roi<-spotROI(c(-5,-5),c(5,5))

We can start with a configuration list that looks very much like earlier examples
> config<-list(alg.func=sphere,
+ alg.roi=roi,
+ seq.predictionModel.func="spotPredictForrester",
+ seq.predictionOpt.method="L-BFGS-B",
+ spot.fileMode=F,
+ io.verbosity=0,
+ auto.loop.nevals=25)

19

However, there are certain changes to be made to configuration for deterministic
problems.

1. Optimal Computation Budget Allocation is neither necessary nor possible,
so it has to be deactivated. Hence, we set spot.ocba to FALSE.

2. The initial and sequential design points do not need to be evaluated repeat-
edly. Therefore, we set init.design.repeats and seq.design.maxRepeats
to one.

> config$spot.ocba=FALSE
> config$init.design.repeats=1
> config$seq.design.maxRepeats=1

With these changes, SPOT can be started and the generated results can
viewed.

> res<-spot(spotConfig=config)

spot.R::spot started

> print(res$alg.currentResult[,4:9])

STEP SEED CONFIG VARX1 VARX2 Y
1 0 1234 1 2.01353063 4.45208558 23.87537164
2 0 1234 2 -3.98847824 3.95660866 31.56271072
3 0 1234 3 1.99644571 -1.15556965 5.32113668
4 0 1234 4 0.76568967 -3.77723140 14.85375770
5 0 1234 5 4.31466261 -0.57982982 18.95251607
6 0 1234 6 -4.18798826 -2.58001706 24.19573368
7 0 1234 7 -2.00878078 0.02079085 4.03563249
8 0 1234 8 3.20075959 1.38044797 12.15049857
9 0 1234 9 -1.35396278 -4.57765157 22.78810913
10 0 1234 10 -0.56244927 2.19142606 5.11869737
11 1 1234 11 -0.31929738 0.56017576 0.41574770
12 1 1234 12 0.49380446 -0.72776007 0.77347757
13 1 1234 13 0.43639658 0.86660513 0.94144642
14 2 1234 14 -0.42955831 0.06721684 0.18903845
15 2 1234 15 0.15468483 -0.48861284 0.26266991
16 2 1234 16 0.52580978 0.15022249 0.29904272
17 3 1234 17 -0.15182185 -0.09236320 0.03158083
18 3 1234 18 -0.31333973 0.14101794 0.11806785
19 3 1234 19 0.31928189 -0.19640035 0.14051402
20 4 1234 20 0.02987370 -0.12132428 0.01561202
21 4 1234 21 -0.09071041 -0.33762395 0.12221831
22 4 1234 22 -0.28203678 -0.25850504 0.14636960
23 5 1234 23 0.58639646 -0.55008131 0.64645026
24 5 1234 24 0.81520531 0.40903780 0.83187162
25 5 1234 25 0.90825434 -0.36748141 0.95996853

As can be seen, each configuration tested during the SPOT run was evaluated
only once. We can extract the best solution with the following command.

20

> best <- res$alg.currentBest[nrow(res$alg.currentBest),]
> print(best)

Y VARX1 VARX2 COUNT CONFIG STEP
201 0.01561202 0.0298737 -0.1213243 1 20 6

Note, if you are tuning (optimizing) deterministic algorithms or functions, OCBA
has to be disabled. Otherwise, SPOT will exit with a warning message.

9 Summary
This article describes how SPOT can be used for tuning a search heuristic,
i.e., SANN. We can distinguish three levels, which are involved in this tuning
process. On level (L1), we can specify the real-world system, which includes the
objective function. The second level (L2) contains the optimization algorithm,
which can be a stochastic algorithm such as SANN. Finally, the third level (L3)
describes the tuning algorithm, e.g., SPOT.

SANN’s basic functionality is introduced and its parametrization described.
Two parameters, namely tmaxand temp, are crucial for SANN’s performance.
Instead of manually tuning these two parameters, we use the SPOT to find
good parameter values systematically. Therefore, a simple objective function,
i.e., the sphere function, was used. This results in the following setting: SANN
was used to optimize the sphere function, and SPOT was used to optimize
SANN. To differentiate these two optimizations, the latter was referred to as
tuning.

We also discussed SPOT’s file mode and presented a step-by-step walk
through SPOT’s tuning process. The SPOT process is based on the follow-
ing steps: Initialization (spotTask=init), run (spotTask=run), sequential (spot-
Task=seq), and report (spotTask=rep). If SPOT is run automatically, the
following sequences is executed: init, run, seq, run, . . ., and finally rep.

How to setup an interface to optimization algorithms, which were pro-
grammed in other programming languages was discussed. A wrapper function,
which executes a JAVA program, was introduced. Finally, we discussed the
SPOT configuration for deterministic algorithms.

The book [2] might be a good starting point for further studies. New related
to SPOT are published on www.spotseven.de.

References
[1] Thomas Bartz-Beielstein. Experimental Research in Evolutionary

Computation—The New Experimentalism. Natural Computing Series.
Springer, Berlin, Heidelberg, New York, 2006.

[2] Thomas Bartz-Beielstein, Marco Chiarandini, Luis Paquete, and Mike
Preuss, editors. Experimental Methods for the Analysis of Optimization Al-
gorithms. Springer, Berlin, Heidelberg, New York, 2010.

21

[3] L. Breiman. Random forests. Machine Learning, 45(1):5 –32, 2001.

[4] S. Kirpatrick et al. Optimization by simulated annealing. Science, 220:671–
680, 1983.

[5] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-
900051-07-0.

22

	Bart12iTitelblatt
	Bart12iText

