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Abstract. Formerly, multi-criteria optimization algorithms were often
tested using tens of thousands function evaluations. In many real-world
settings function evaluations are very costly or the available budget
is very limited. Several methods were developed to solve these cost-
extensive multi-criteria optimization problems by reducing the number
of function evaluations by means of surrogate optimization. In this study,
we apply different multi-criteria surrogate optimization methods to im-
prove (tune) an event-detection software for water-quality monitoring.
For tuning two important parameters of this software, four state-of-the-
art methods are compared: S-Metric-Selection Efficient Global Optimiza-
tion (SMS-EGO), S-Metric-Expected Improvement for Efficient Global
Optimization SExI-EGO, Euclidean Distance based Expected Improve-
ment Euclid-EI (here referred to as MEI-SPOT due to its implementa-
tion in the Sequential Parameter Optimization Toolbox SPOT) and a
multi-criteria approach based on SPO (MSPOT).

Analyzing the performance of the different methods provides insight into
the working-mechanisms of cutting-edge multi-criteria solvers. As one
of the approaches, namely MSPOT, does not consider the prediction
variance of the surrogate model, it is of interest whether this can lead
to premature convergence on the practical tuning problem. Furthermore,
all four approaches will be compared to a simple SMS-EMOA to validate
that the use of surrogate models is justified on this problem.
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1 Introduction

The time required for a process feedback can play a crucial role in many fields
of industrial optimization. Complex and expensive real-world processes or time
consuming simulations lead to large evaluation times. This restricts optimiza-
tion processes to only a very limited number of such evaluations. Moreover,
almost all industrial optimization tasks feature more than one quality criterion.
Techniques from multi-criteria decision making, evolutionary multi-criteria op-
timization (EMO) in particular, were developed during the last decade to solve
such tasks. The necessity to combine EMO techniques and optimization meth-
ods such as EGO [17] or SPO [1], which require a very small number of function
evaluations only, should be self-evident. The application of such methods to real-
world problems in industrial optimization provides a reasonable way to assess
their feasibility. In contrast to artificial test functions, it allows for an assessment
of the practical relevance for these kinds of problems.

In this paper, which is an extended version of a paper submitted to the
Evolutionary Multi-Criterion Optimization EMO Conference 2013, we focus on
four different tuning methods which are applied to tune an anomaly detection
software for water quality management. This problem is usually handled by
receiver operator characteristic (ROC) analysis. Due to specific limitations of the
software concerned, this can not be applied in the classical way. Rather, the ROC
curve should be approximated by MCO methods. That means, the ROC curve
can be interpreted as a Pareto front. Interpreting ROC curves from the multi-
criteria optimization perspective is an established approach in computational
intelligence, see, e.g., [22].

In Sec. 2, we will summarize the former work performed in relevant research
fields. The specific problem is presented in Sec. 3. The tuning algorithms (based
on different SPO and EGO implementations) are described in Sec. 4. Section 5
describes the experimental setup, whereas the analysis is presented in in Sec. 6.
Finally, Sec. 7 gives a summary of findings. The paper concludes with an outlook
presented in Sec. 8.

2 Former research

Surrogate modeling is not a new topic in optimization. Jin [16] provides a
comprehensive overview of single-objective optimization with surrogate models.
While methods like EGO or SPO for single criteria optimization are well estab-
lished, the application of surrogate modeling procedures for multiple objectives
is more recent.

2.1 Surrogate modeling in multi-criteria optimization

Several approaches employ surrogate modeling in MCO, like the well established
ParEGO by Knowles [20]. An overview of surrogate modeling in MCO is given
by Knowles and Nakayama [21]. To balance exploration and exploitation within
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a limited budget situation, several methods try to employ infill criteria based
on the expected improvement (EI). Two things are required for defining such a
criterion: the definition of the improvement and an algorithm for computing its
expectation [30]. Thereby, negative improvements are not possible, dominated
solutions should result in an improvement of zero. As large variances potentially
result in big improvements and big deteriorations are not penalized,these criteria
also focus on the exploration of uncovered areas of the search space. It is of
interest to see if the additional exploration is desirable for the problem at hand, or
if the exploration provided by the initial design is already sufficient. In particular,
since exploration is enforced by the requirement to cover the whole Pareto front
(or set).

2.2 ROC analysis

ROC provides means to select a threshold of a classifier based on trade-off
between its True Positive Rate (TPR) and False Positive Rate (FPR). In case of
an event detection software like CANARY [14, 26]4, TPR is the hit rate which
is based on the number of correctly recognized events. FPR on the other hand
is the false alarm rate. False alarms occur whenever the algorithm detects an
event when actually none exists.

The ROC curve shows the trade-off between TPR and FPR. Usually, it is
drawn based on the threshold value of the classifier. This means, depending on
the chosen threshold value one receives different pairs of TPR/FPR values which
can be connected to a curve. To evaluate the performance of a classifier, the Area
Under Curve (AUC) can be used. The worst possible classifier will have an AUC
of 0.5, since all pairs of TPR and FPR will be on the straight line between the
two extreme points of the curve. This performance would be equal to random
guessing. The best possible classifier will have an AUC of 1, which means there is
a configuration where no false alarms occur, all events are identified (cf. Fig. 1).

In the case of CANARY, this form of measuring the performance can not
be used, since the threshold value used in CANARY cannot be chosen indepen-
dently. Therefore, each different setting of the threshold has to be considered as
a new classifier. The ROC curve can then be used to compare performance of the
different classifiers. Consequently, the threshold value is one of the parameters
to be optimized.

2.3 MCO in ROC Analysis

The ROC curve can be interpreted as a Pareto front, although it would classi-
cally only represent the Pareto front of an MCO problem with one dimensional
decision space (i.e. the decision threshold being the only decision variable). How-
ever, it is reasonable to apply MCO methods for other cases, for instance when

4 For documentation, manuals and source code of CANARY see:
https://software.sandia.gov/trac/canary
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Fig. 1: Relationship between threshold and ROC curve in the classical case. The upper
graphs show the distribution of the events for three different cases, the lower graphs
show the ROC curves for the same cases. Thereby, TN is True Negative, TP is True
Positive, FN is False Negative, FP is False Positive. Leftmost is the case of perfect
classification, the rightmost is random guessing.

different classifiers are to be compared, or the threshold is not independent of
the classification process. This is the case in the problem described in this paper.

Applying MCO for ROC analysis is not a new topic. Kupinski and Anasta-
sio [22] considered performances of the solutions returned from a multi-criteria
objective genetic optimization as series of optimal (sensitivity, specificity) pairs,
which can be thought of as operating points on a ROC curve. ROC analysis has
also been introduced to machine learning as described by Flach [10]. Recently,
Wang et al. [31] consider the ROC convex hull (ROCCH). They use multi-criteria
genetic programing to approximate the optimal ROCCH. A survey of MCO ap-
plications for ROC can be found in the work of Everson et al. [9].

3 Problem Description

The problem to be solved in this paper is the tuning of a software designed
for anomaly detection in water quality management: CANARY. It was devel-
oped by the US Environmental Protection Agency EPA and Sandia National
Laboratories to detect anomalies (or events) in water quality time series data.
It implements several different algorithms for time series prediction, pattern
matching, and outlier detection. The main concept is to employ a time series
algorithm to predict the next time step, and afterwards to distinguish whether
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the real value deteriorates from the predicted value sufficiently to declare it an
outlier or anomaly.

CANARY can use additional methods to reduce false alarms. One method is
to look at the frequency of outliers in a smaller time window, to make sure that
isolated deviations due to noise do not raise an alarm. This was found to be not
helpful, at least for the data sets used in this study, as the data is not that noisy
on a smaller time frame. Another method to reduce false alarms would be to
compare known non-event patterns with current data, to exclude events out of
interest. which are not of interest. This is impossible with the data relevant for
this paper as well, as pattern matching requires knowledge about the position
of such non-events, which is unavailable for the data set used.

We will tune the two relevant parameters window size and threshold value.
The window size defines how many values are used for the prediction, while the
threshold value defines how much deviation between measured and predicted
value are sufficient to declare an outlier. Both parameters have previously been
tuned in different ways. Firstly, they have been tuned by a step-by-step proce-
dure [26] which unfortunately does not consider interactions between parameters.
Secondly, another study [32] tuned them with model based optimization, con-
sidering interactions, but only used a single criteria approach, which basically
combined the objectives False Alarm Rate and Hit Rate to a weighted sum.

Usually, as described by Murray et al. [26], a classical ROC analysis would be
performed. The AUC would be used as a single quality criterion. This approach
is not perfectly viable in this case, as the threshold value is not independent of
the prediction process. Therefore, it is a more reasonable approach to add the
threshold to the list of tuned parameters and apply multi-criteria optimization.
For this reason, we will mainly use MCO-terminology in the following (e.g.,
Pareto front instead of ROC curve).

4 Algorithm Description

Four different tuning algorithms are in the focus of this study. Due to the sim-
ilarity to the AUC, the hypervolume is applied as a criterion in all but one
of these approaches. Two of them are based on R-code (SPOT package), two
are MATLAB implementations (SMS-EGO and SExI-EGO). All four share the
following basic workflow:

1. Evaluate an initial design of n points on the target problem (CANARY)
2. Build models (here: Kriging) for each objective
3. Use models to determine the next design point to be evaluated
4. Evaluate design point and update non dominated set
5. Iterate 2-4

The four tuning algorithms differ in the type of the invoked infill criterion.
Three algorithms use different multi-criteria EI. The fourth is a straightforward
approach that, instead of aggregating the objective values from the models, tries
to optimize these separately with common MCO methods.
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4.1 MEI-SPOT

This multi-criteria expected improvement approach is the only approach that
does not use hypervolume as a criterion. The implementation is based on MAT-
LAB code of Forrester et al. [12]. MEI-SPOT is based on the integration over the
non-dominated area and an Euclidean distance to the next point on the front.
While Forrester et al. use a dominating variant (e.g. improvement considers
only points that dominate existing Pareto-optimal solutions), the implementa-
tion used here uses an augmenting variant (i.e. improvement is also reported
when a point is added to the front, without dominating an existing Pareto-
optimal solution). The different formulations for this distinction are detailed
by Keane [19]. This approach is time consuming due to the integration. It can
also have issues with the scaling of different objectives, since it is based on the
Euclidean distance.

4.2 SExI-EGO

The S-Metric Expected Improvement [7] computes the expected increment in
hypervolume for a point, given a non-dominated set. Its exact computation is
described in [8]. It is differentiable, rewards high variances [8], and is continous
over the whole search domain. A disadvantage is the high effort of its exact
computation, in particular when more than two objectives are considered.

4.3 SMS-EGO

SMS-EGO, as suggested by Ponweiser et al. [27], employs a hypervolume based
infill criterion as well. Thereby, a potential solution is computed using the lower
confidence bound ŷpot = ŷ − αŝ, where ŷ is the mean value predicted by the
Kriging model, ŝ is the variance, α is a gain factor for the variance. This approach
may also explore unvisited regions of the design space, but without requiring
the tedious integration of the previous approaches. It thus scales better with
increasing objective dimension.

If the resulting ŷpot is ε-dominated or dominated, SMS-EGO will assign a
penalty value. If it is non-dominated, the hypervolume contribution will be used.
This approach avoids plateaus of the criterion, but integrates non differentiable
parts. For more details see Ponweiser et al. [27] and Wagner et al. [30].

4.4 MSPOT

MSPOT is a multi-criteria approach based on the Sequential Parameter Opti-
mization Toolbox SPOT (cf. Zaefferer et al. [33]). It does not employ any form of
expected improvement, or other forms of using the variance for exploration. The
surrogate models of the different objectives are exploited by using a multi-criteria
optimization algorithm (for instance: SMS-EMOA or NSGA-II).

This will yield a population of promising points. One or more points of these
are chosen for evaluations on the real target function. This selection is based
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on non-dominated sorting and the individual hypervolume contribution. As the
original approach [33] could lead to clustering of solutions in the objective space,
the available points have to be considered when calculating the hypervolume con-
tributions. For this purpose, the known points are reevaluated on the surrogate
model.

In contrast to the other approaches in the study, this one does not promote
exploration as much, since the variance measure computed by the Kriging model
will not be used. On the other hand, the approach is not limited to surrogate
modeling methods that yield a variance for each candidate. Of course, the vari-
ance can easily be added to MSPOT, as well as be removed from SMS-EGO
(α = 0) or the integration-based algorithms (ŝ = 0).

The optimization process of MSPOT is not a completely new idea. Espe-
cially, two similar approaches suggested previously have to be mentioned. Firstly,
Voutchkov and Keane [29] employed NSGA-II to generate promising solutions in
a quite similar optimization loop. In contrast to MSPOT, they used Euclidean
distance to ensure evenly spaced points on the front. Instead of considering dis-
tance to known points, they suggest a larger number points in each loop, which
also ensures a wider spread on the final front. The second similar approach is
presented by Jeong and Obayashi [15]. While they also optimize the objectives
separately, they employ the single objective EI criterion for each objective, thus
optimizing a vector of EI values.

4.5 SMS-EMOA

In addition to the four approaches above, a simple SMS-EMOA will be considered
(cf. Beume et al. [2]). The results from this optimizer are used as a baseline for
the comparison. In general, surrogate optimization methods are expected to
outperform a non-surrogate SMS-EMOA, particularly on small budgets.

5 Experimental Setup

The following research questions are to be treated for the CANARY problem in
this study.

1. Can multi-criteria methods produce a front of parameter settings that help
an operator to choose parameters for the CANARY event detection software?

2. Which kind of tuner is recommendable?
3. What aspects of a tuner affect its performance?
4. Is the use of surrogate models advantageous?
5. Can previous findings about the tuners be confirmed?
6. How are Pareto optimal solutions spread in the design space?

To answer these questions, several experiments were conducted. Their setup
is described in the following.
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5.1 Time Series Data

Two different sets of raw data are used. The first set is used to train CANARY
(i.e. to tune the parameters), the second is used for validation of the resulting
settings on unseen data. Additionally, from each of those sets, 3 different in-
stances are generated, where each contains simulated (i.e. superimposed) events
to be detected by CANARY. The data sets considered are available within the
CANARY software package.

Training Data The data recorded over a first month at a specific measurement
station is used as training data. Four different sensor values are used (pH-Value,
Conductivity, Total Organic Carbon, Chlorine). The time interval between mea-
surements is five minutes. This results in about 9 000 time steps for each of the
four sensors.

As the data-set contains no events known beforehand (which is a typical
problem for any available real-world data), events have to be simulated and
incorporated in the time series. Therefore, 3 data sets are created from the raw
data, each containing superimposed square waves (with smoothed transition) of
different event strengths: 0.5, 1, and 1.5. These strengths indicate the amplitude
of the events, and are multiplied to the standard deviation of the original signal.
Figure 2 presents raw data and data with events for two sensor value as an
example.

As can be seen from the left part of Fig. 2, the raw data (i.e. without events)
is rather strongly affected by background changes. This particularly holds for
the conductivity values (COND), which jump from a baseline value around 50
to a new baseline value at about 200 and back. In general, these background
changes are irregularly distributed over time and always switch back and forth
for each of the signals. Obviously, such changes make event detection extremely
difficult.

Validation Data The validation data is similar to the training data, as it is the
second month of data from the same measurement station. As could be expected,
it provides a very similar background behavior with some sudden jumps. These
jumps, however, are more numerous than in the training data, which is expected
to lead to higher false alarm rates on the validation data.

5.2 Optimization Problem Configuration

As mentioned earlier, three different data sets are considered, each with a differ-
ent event strength. Additionally, CANARY is tuned in 3 different configurations,
where each configuration uses a different time series prediction algorithm. These
are: Time Series Increment TSI, Linear Prediction Correction Filter LPCF and
Multi-Variate Nearest Neighbor MVNN. For more details on these algorithms,
which are implemented in CANARY, see the corresponding documentation [26]
and the manual [14]. Therefore, 3 × 3 = 9 instances are to be optimized. The
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Fig. 2: Example of time series data as used in the experiments. Raw data without events
(left) and with superimposed events of strength 1.5(right). CL2 is Chlorine, TOC the
Total Organic Carbone.

optimization problem is multi-objective, where both decision and solution space
are two dimensional: The window size and the threshold are tuned, to yield a
minimal FPR and a maximal TPR value. Since all tuning methods in this study
do minimization, TPR is negated. The problem is not noisy, as the algorithms
employed in the event detection software are deterministic.

There are two nice features of the problem, which avoid issues of algorithm
configuration.

1. The choice of the reference point. With this problem the worst case is known:
Zero for TPR and one for FPR. To avoid extreme points overlapping with
the reference point, the latter was chosen to be [0.1,1.1] since TPR ranges
from -1 to 0 due to the negation.

2. Scaling of objective space is not an issue here, as both objectives have the
same range. They only differ in that way, that TPR is maximized and FPR
minimized. Scaling has not to be considered in the algorithms.

5.3 Tuning Methods Configuration

All algorithms are configured to use approximately the same settings, i.e.:
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– initial design size: 21
– number of points added in each step: 1
– number of maximal evaluations of the target function: 80
– surrogate model: DACE-Kriging [25]

The optimization method to find the best point (with or without expected im-
provement) differs. Some criteria aggregate the different objectives into a single-
objective infill criterion, which is then optimized. Therefore, SExI-EGO, SMS-
EGO and MEI-SPOT invoke a local optimization method, restarting in several
partitions of the design space. In contrast to this, MSPOT uses SMS-EMOA
to optimize the surrogate models of the objectives without aggregating their
information.

While both the R and the MATLAB implementations use DACE-Kriging [25] there
are small differences in the implementations. This includes differences between
the inbuilt local optimization methods (e.g. simplex, gradient based) used during
model building and optimization.

The SMS-EMOA employed as a baseline comparison is configured to also use
a starting population of 21 points. All other settings are left at defaults.

6 Analysis

6.1 Comparing Infill Criteria

The results of the experiments are depicted in Fig. 3. It shows the resulting
hypervolume of each tuner for each problem instance. The hypervolume values
are recalculated with respect to the reference point [0, 1] to have the ranges
comparable to the AUC values. Plots with the original reference point used
during tuning look alike and do not show major differences. As can be seen, there
are no significant differences between the performance of SMS-EGO, MSPOT,
and SExI-EGO. In comparison, MEI-SPOT and SMS-EMOA perform worse.
For the SMS-EMOA, this was expected and can be blamed to not invoking a
surrogate model. The Euclidean EI criterion employed in MEI-SPOT, on the
other hand, was already reported to be less viable due a non-monotonicity with
the dominance relation [30].

It can be observed that the event strength has an improving influence on
the detection performance of the Pareto optimal solutions. This is expected, as
stronger events should be easier to identify. The same can be observed for the
algorithm MVNN, which provides best overall detection results. Both observa-
tions are in line with earlier reported behavior in the work on tuning CANARY
single objectively [32]. An optimal performance would be leading to a hypervol-
ume of exactly one. Realistically, this is not obtainable. The gap between the
best front’s hypervolume and the theoretical optimum is largely due to the fact
that the FPR rate is strongly affected by the sudden jumps in the time series
data. Besides this, the results are in a similar range of TPR and FPR values as
found in the earlier mentioned single-objective tuning of CANARY.

The results discussed above have been obtained on the training data set only.
To validate our findings all points of the final Pareto front were re-evaluated on
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Fig. 3: Boxplot of first results on training data. The hypervolume is computed with a
reference point of zero for TPR and one for FPR. Larger hypervolumes are better. emax
is the event strength, atype is the algorithm type used in CANARY.
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the validation data set. Results from these runs are shown in Fig. 4. It can be
observed that performance differences become smaller while variances increase.
The former particularly holds for incorporating MVNN in CANARY. In general,
it can be noticed that the received hypervolume decreases on the validation data.
This can mainly be blamed on a slightly different background behavior of the
validation data set, as described in Sec. 5.1. While there is a strong performance
drop for nearly all instances, the results for MVNN and an event strength of
1.5 only decrease slightly. A similar behavior was observed for single-objective
tuning of CANARY in an earlier work by Zaefferer [32]. Still, the validation data
shows the same relations as the training data, considering the performance of
different tuners.

Table 1 provides the average number of points on a single Pareto front. Note,
that 30 to 50 percent of the points on a front are actually dominated, if being
re-evaluated on the validation data.

Table 1: Average number of points on a Pareto front. The second line shows how many
of those points remain, after being reevaluated on validation data.

MEI-SPOT MSPOT SMS-EGO SExI-EGO SMS-EMOA

Training Data 38.70 29.27 23.11 22.92 21.00

Validation Data 22.91 18.13 14.54 14.27 12.54

As mentioned above, MSPOT, SMS-EGO, and SExI-EGO do not show signif-
icant differences in their results. One main distinction between these approaches
is that MSPOT does not make use of the variance produced by the DACE model,
and therefore lacks exploration. It might therefore be the case that MSPOT
performs as good as the other methods, because the initial design already pro-
vides enough exploration of the design space so that it is sufficient to spent all
sequential evaluations on purely exploiting the surrogate models prediction.

To test this, two additional experiments are performed. Firstly, the MSPOT
experiment is repeated with a much smaller initial design of just 5 points (la-
beled MSPOTSMALL), to validate whether a smaller initial design can deterio-
rate results. Secondly, the SMS-EGO experiment was repeated disregarding any
variance information. To this end, the gain α is set to zero. Therefore, instead of
the lower confidence bound ŷpot = ŷ−αŝ the potential solution will be ŷpot = ŷ.
This approach will be labeled as SMS-EGOg0.

The resulting hypervolumes on training data are depicted in Fig. 5. Note that
the smaller initial design in fact decreases performance of MSPOT, however, the
margin is quite small. Furthermore, a comparable performance of SMS-EGO with
or without taking the variance in consideration is observed. In some instances
it even performs better without incorporating the variance information. There
seems to be no strong need for the additional exploration for the considered
problem. Such observations are normally expected for unimodal problems, while
more exploration should be profitable on multi modal problems. It might further
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Fig. 4: Boxplot of first results on validation data. The hypervolume is computed with
a reference point of zero for TPR and one for FPR. Larger hypervolumes are better.
emax is the event strength, atype is the algorithm type used in CANARY.
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Fig. 5: Boxplot of additional results on training data, comparing results of follow-up
experiments (i.e. MSPOTSMALL and SMSEGOg0). The hypervolume is computed with
a reference point of zero for TPR and one for FPR. Larger hypervolumes are better.
emax is the event strength, atype is the algorithm type used in CANARY.
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be considered that additional exploration is already inherent in the selection
process as not one single optimum, but a set of points is demanded.

To visualize the problem landscape, Fig. 6 shows contour plots of reference
DACE-models for each objective. These models were built by combining the de-
signs of all algorithms and selecting some representatives based on the distance
to an optimized Latin hypercube design. Whereas, the models seem to have a
rather unimodal shape, there are clusters of optimal solutions due to a slightly
oscillating behavior in the plateau regions. This effect can be observed using
the model predictions and the actual data. As a consequence, the approxima-
tion of the knee region with window sizes between 200 and 400 and a threshold
between 1.0 and 1.5 should be easy, whereas the extreme ones might become a
multimodal problem.
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Fig. 6: Problem landscape of both objectives. Contours show DACE-model based on
represantatives from all evaluations on this instance (Algorithm MVNN and event
strength 1.5). Black dots show all real pareto optimal solutions found. Grey dots show
pareto optimal solutions on the model, yielded with grid sampling.
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7 Summary

In this study, we tested different approaches based on surrogate optimization
to tune an event detection software. Most of the analysis was focused on the
results of training data, since the results on validation data mainly provided
similar results as on the training data. The surrogate optimization approaches
are mostly able to outperform a baseline SMS-EMOA. The MEI-SPOT approach
proved to be the exception from this observation, which confirms earlier findings
by Wagner et al. [30]. This approach of calculating the expected improvement
for multiple criteria seems to be unfavorable.

There was no decisive difference between the other tested approaches, regard-
less whether variance was used in the approach (SMS-EGO and SExI-EGO) or
not (MSPOT and SMS-EGO with zero gain). Plots of the model structures seem
to indicate an almost unimodal fitness landscape for both objectives. This in-
dicates that the additional exploration by variance might not be needed here,
since the fitness landscape is easy to approximate without additional exploration
of the design space.

This study showed that the problem of tuning CANARY can reasonably be
solved by multi-criteria methods. The produced results yield reasonable FPR
and TPR values, which are comparable to previous results achieved by single-
objective optimization. Here, however, the approximation of a Pareto front offers
more flexibility for the operator in charge.

8 Outlook

The following topics will be subject of future research.

– Since the additional exploration by variance does not decrease performance
significantly, it might be interesting to test the lower confidence bound in
MSPOT for future experiments based on other problems.

– It has to be noted that only points on the convex hull of the Pareto front
can be considered to be optimal in some sense. This is due to the fact, that
any point below that hull might be considered to be improvable [11]. Future
work should investigate if concavities in the ROC curve can be repaired for
the application described here.

– The concentration on certain regions of a Pareto front might be a topic for
future research as well. An operator might be more interested in the knee
region of the Pareto front, and less on extreme values, which might cause
intolerable numbers of false alarms. Focusing on a subset of the Pareto front
might save further evaluations, thus reducing the required budget.

– As can be seen in Fig. 7 the Kriging based approaches generate similar re-
sults, with one exception: The Maximum Likelihood Estimation Gaussian
Processes (MLEGP) variant seems to outperformed by the other two vari-
ants. This demands further investigation. Therefore, we plan a more detailed
comparison of different Kriging based approaches.
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Fig. 7: Comparison of different models using the MSPOT approach. DACE is the Krig-
ing model used in previous comparisons. Forrester is a Kriging model implemented in
SPOT based on Matlab Code by Forrester et al. [12]. MLEGP is the Kriging implementa-
tion Maximum Likelihood Estimates of Gaussian Processes in the R package mlegp [6].
MLP is a Multi-layer perceptron neural network [23] from the R package monmlp. QRNN
is Quantile Regression Neural Network from the qrnn package [28, 4]. eSVM is a Sup-
port Vector Machine implementation in the package e1071 using LIBSVM [5]. kSVM
is a SVM in the kernlab package [18]. MARS is Multivariate Adaptive Regression
Splines [13] provided by the earth R package. RF is a Random Forest implementation
from the R package randomForest which is based on Breiman and Cutler’s original
Fortran code for classification and regression [3]. LM uses a Linear Model fitted with
the rsm package [24].
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