
CIplusBand 8/2017

Surrogate-Assisted Learning of NeuralNetworks
Jörg Stork, Martin Zaefferer, Andreas Fischbach, Frederik Rehbach,Thomas Bartz-Beielstein





Surrogate-Assisted Learning of Neural Networks

Jörg Stork, Martin Zaefferer, Andreas Fischbach, Frederik
Rehbach, Thomas Bartz-Beielstein

SPOTSeven Labs, TH Köln
Steinmüllerallee 1, 51643 Gummersbach
E-Mail: firstname.lastname@th-koeln.de

Introduction

Surrogate-assisted optimization has proven to be very successful if applied
to industrial problems. The use of a data-driven surrogate model of an
objective function during an optimization cycle has many benefits, such
as being cheap to evaluate and further providing both information about
the objective landscape and the parameter space. In preliminary work, it
was researched how surrogate-assisted optimization can help to optimize
the structure of a neural network (NN) controller [7]. In this work, we will
focus on how surrogates can help to improve the direct learning process
of a transparent feed-forward neural network controller. As an initial
case study we will consider a manageable real-world control task: the
elevator supervisory group problem (ESGC) using a simplified simulation
model [3]. We use this model as a benchmark which should indicate the
applicability and performance of surrogate-assisted optimization to this
kind of tasks. While the optimization process itself is in this case not
considered expensive, the results show that surrogate-assisted optimization
is capable of outperforming metaheuristic optimization methods for a low
number of evaluations. Further the surrogate can be used for significance
analysis of the inputs and weighted connections to further exploit problem
information.

Motivation

Recent advancements in robotics and control have shown, that methods
from the field of computational intelligence are becoming more and more

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 1



significant. Robot control policies are no longer just trained by machine
learning algorithms. Rather, robots learn how to solve a certain task by
themselves, e.g., by methods of evolutionary robotics [4]. In an real world
environment evolutionary learning of control policies can be costly, as the fit-
ness of a certain robot action can only be evaluated after a sequence of time
steps, which can easily be in minutes or hours. Thus, these learning pro-
cesses pose a difficult optimization problem and standard learning methods
are not suitable for the time requirements of these tasks. Neural networks
are a well established type of controller in evolutionary robotics. Here, the
set of coefficients and the topology of the network need to be optimized
for optimal performance. More recent and sophisticated approaches for
developing and learning of controllers, such as neuroevolution of augmenting
topologies [18] were invented to handle these optimization processes, but
they still need many evaluations to adapt the neural networks.

∙ Our hypothesis is that assisting this learning process by means of
surrogate-assisted optimization, which has proven to be able to per-
form significantly well in expensive industrial optimization tasks
[14, 15], should be beneficial.

∙ As a second hypothesis, we assume that these surrogate models can
help to retrieve additional useful information about the objective
function, e.g., importance of certain inputs.

We want to test this hypothesis based on experiments with a small real-world
task simulator, which is implemented as a simple neural network and not
expensive to evaluate. The results can be transferred to more sophisticated
tasks, like a real world learning process. The results should indicate
the applicability and basic performance of surrogate-assisted optimization
methods in comparison to state-of-the-art optimization algorithms. The
variable importance information provided by the surrogate models is also
analyzed with regard to their usefulness. For instance, variable importance
could be helpful to identify especially important or defective inputs sensors
of a physical controller, e.g., in an evolutionary robotics task.

2 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



The Elevator Supervisory Group Problem

General Description

Today, elevator systems are present everywhere in urban areas. They need
to be optimized to achieve the desired service quality in terms of waiting
time for the customers, as well as in terms of energy efficiency. They are
controlled by an elevator group controller, which assigns the elevator cars
to certain floors and destinations on basis of the customer service calls. The
ESGC problem as introduced by [3] is a so-called destination call system,
where the customer can choose their desired destination on the floor level
outside the elevator cars. In the introduced problem instance, the controller
is implemented as a sophisticated neural network NN, where the specific
structure and weights depict a certain control strategy. The optimization
of these weights imposes a set of challenges, which render this task highly
complex:

∙ The topology of the fitness function is to a high extent non-linear as
well as multi-modal.

∙ The traffic load is dynamic and stochastic, as customers do not arrive
in a deterministic manner.

∙ Gradient-based methods cannot be applied successfully to this opti-
mization problem.

∙ The simulator is computational expensive, which limits the number
of function evaluations.

As consequence of the complexity of such simulators [3] introduced a
simplified validation model of an ESGC system, the sequential ring(S-
Ring).

S-Ring Perceptron Simulator

The S-Ring was introduced to benchmark different ESGC algorithms inde-
pendent of a certain elevator/floor configuration. It uses a simplified NN
to control the elevators, where the connection weights can be modified and
represent the variables of an optimization problem. Each weight setting

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 3



will result in a certain control strategy which is tested on simulations of
different traffic situations. The S-Ring has low computational costs, which
allows us to use an ESGC instance as a benchmark for a large variety of
algorithms. Using different traffic situations will lead to a fitness function
which is subject to noise. The S-Ring optimization problem can be defined
as follows [3]:

𝐹 (𝑛, 𝑚, 𝑝, �⃗�) = 𝐸

(︃
𝑡∑︁

𝑖

�⃗�𝑖

)︃
(1)

where 𝑛 is the number of elevators, 𝑚 the number of floors, 𝑝 the probability
of an arriving customer per floor and �⃗� the NN weight vector, which depicts
the control policy. This objective function evaluates the average waiting
time of all customers �⃗�𝑖 during a simulated traffic situation with 𝑡 steps. For
a given set of 𝑛, 𝑚, 𝑝 the performance is only influenced by the weight vector
of the NN controller. Thus, the simplified problem, as further used during
this paper, can be written as 𝐹 = 𝐹 (�⃗�). The parameters 𝑛, 𝑚, 𝑝 were
set as follows: Table 1 also displays the number of time steps for a single

Table 1: S-Ring Configuration

nFloors nElevators probNewCustomer nIterations
6 2 0.3 10000

simulation run, which was set rather high to simulate a longer period. For
each simulation run, the exact same period was used, resembling a certain
fixed time-frame, e.g. a certain day in a year. By choosing a fixed time
frame, we removed the noise of the problem, which renders the problem
simpler to optimize. Moreover, the problem was adapted by setting the
desired customer service quality of the ground floor to a high priority, while
the second floor was set to a lower priority. This should simulate a typical
real world hotel scenario, where it is wanted that arriving customers in the
lobby are fast served. The second floor displays an internal service area,
which is of low priority for the quality of service. As a side effect, this
reduces the dimensionality of the optimization problem from 12 to 10.

4 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



Methods for Learning of Neural Networks

A standard method for learning NN controller is backpropagation. Back-
propagation optimizes the weights by utilizing a set of training data that
contains input values with corresponding outputs. In case of the S-ring op-
timization, our task is not machine learning, but to find the (single) global
optimum for the given fitness topology of a time dependent simulation
problem. We receive a fitness value only after evaluating the weights in
a designated simulation run. This means, there is no clear mapping from
input to output data, as the output only defines a certain control policy
and the final action changes dynamically in every time step. Thus we will
need to use more sophisticated methods: metaheuristic optimization and
surrogate-assisted optimization.

Metaheuristic Optimization

Metaheuristics are sophisticated heuristics, which are often inspired by
nature. They utilize stochastic processes (randomization) and usually do
not require any gradient information. Metaheuristics are known to be
general solvers which apply to a large variety of global problems without
needing a priori information. They are suitable for highly non-linear and
multi-modal problems, as well as so-called black-box problems, where no
information about the topology of the objective function is known. No
algorithm is able to deliver their best performance for every problem
without adapting their control parameters; By parameter tuning [2, 6], we
can exploit beneficial parameter settings, but it is very time-demanding.
To provide reliable results without putting a lot of effort into algorithm
tuning, we selected four different state-of-the-art R implementations of
common metaheuristics from the range of simulated annealing methods
and evolutionary algorithms for our comparison. Simulated annealing [9] is
inspired by annealing processes in metallurgy, where materials are heated
and cooled to change their physical structure. Simulated annealing follows
the base principle of an greedy stochastic algorithm, but implements a
control strategy which allows to accept also solutions with lesser fitness.
This allows to escape local optima and establishes a global search strategy.
Evolutionary algorithms [1] are based on the principles of natural selection:
in each generation, a population of individuals (e.g. solutions �⃗�) is evolved

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 5



by mutation, recombination and selection steps. The selected packages
are DEoptim, GA, GenSA and genoud. DEoptim and GA were chosen
due to personal preference, while the two latter were chosen based on the
survey on Continuous Global Optimization in R by Mullen [12]. GenSA
and genoud performed best on a set of different optimization problems.

∙ DEoptim [13] is an R-implementation of the differential evolution
algorithm [19], which belongs to the class of evolutionary algorithms.
It is designed for global optimization using real vectors.

∙ GA [16] is a package which implements an genetic algorithm an
allows optimization of real and integer problems.

∙ GenSA provides a version of generalized simulated annealing [20].

∙ rgenoud [11, 17] is an R-package which provides and implementation
of a so-called hybrid algorithm. This algorithm combines evolutionary
algorithms with the derivative-based quasi-Newton method Broyden-
Fletcher-Goldfarb-Shanno (BFGS).

Surrogate-Assisted Optimization

Surrogate-assisted optimization algorithms employ data driven models
to lighten the burden of expensive objective function evaluations. One
framework for surrogate-assisted optimization is Sequential Parameter
Optimization (SPO) [2]. SPO provides a flexible framework that employs
methods from the fields of design of experiment, optimization, and statistics.
In essence, SPO starts by generating an initial design of experiment, then
builds a surrogate model (e.g., a linear model or Kriging). Then, the
surrogate model is optimized to suggest a promising candidate solution,
which is afterwards evaluated by the expensive objective function. These
last steps (model building, optimization and evaluation) are iterated until
some budget of evaluations is exhausted. Figure 1 shows the optimization
cycle for the underlying ESGC problem.

6 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



Complex ESGC 
Simulator

S-Ring Simulation Model
Pre-defined Structure 

Neural Network

Surrogate Model

Optimization

Fitting and Updating Model

Surrogate Prediction

Best Predicted Weight
Vector

Objective Function 
Information / Variable 

Importance

Figure 1: Surrogate-Assisted Optimization Cycle. The ESGC Simulator is
approximated by the S-Ring simulator. The fitness topology is fitted
by the surrogate on basis of the initial design and sequential updates.
The sequential weight vectors are computed by an optimization of the

surrogate.

The experiments make use of SPOT, the R implementation of SPO. For
this study, we have chosen to investigate three different surrogate models
within the SPO framework.

∙ Second order model with step-wise regression: Firstly, we
build second order linear regression models. The model is first build
with all first order effects, quadratic effects as well as second order
interactions. E.g., for two parameters 𝑥1 and 𝑥2 a model of the form
𝑦(𝑥) = 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥2

1 + 𝑐4𝑥2
2 + 𝑐5𝑥1𝑥2 is determined. This full

model is further refined by backwards, stepwise variable selection
based on the Akaike information criterion. The stepwise variable
selection is skipped whenever the data size is insufficient. While
the resulting models are comparatively simple, one advantage is the
comparatively low computational effort.

∙ Random Forest: Secondly, we use a Random Forest [5] model.
Random Forests are ensembles of decision trees. We use the default
settings of the randomForest R-package [10]. Random Forests are able
to learn non-linear dependencies in the data, are typically numerically
robust and fast to compute, and can handle discrete input variables.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 7



∙ Kriging: Thirdly, a Kriging model (also known as Gaussian process
regression) is employed. Kriging assumes that the observed data is the
result of a stochastic process. We use an implementation from the R-
package SPOT. The implementation is loosely based on Matlab code
by Forrester et al. [8]. The correlation of samples is modeled via an
exponential correlation function cor(𝑥, 𝑥′) = exp(−∑︀𝑛

𝑖=1 𝜃𝑖|𝑥𝑖−𝑥′
𝑖|𝑝𝑖).

The vectors 𝑥 and 𝑥′ are samples, or candidate solutions of the
optimization problem. The parameters 𝜃𝑖 > 0 and 1 ≤ 𝑝𝑖 ≤ 2
are determined by maximum likelihood estimation. Forrester et al.
provide a detailed and easy to follow description of Kriging and
related methods [8]. Of the three models, Kriging requires the largest
computational effort, yet produces the potentially most accurate
model.

Variable importance

Most black-box optimizers tend to deliver only the best found parameter
settings found within the available budget of objective function evaluations.
Hence, these optimizers do no provide any information on what they have
learned about the importance of the input variables during the optimization
process. An advantage of the surrogate model techniques applied in this
study is the provision of some knowledge beyond the best found parameter
setting. For example, the estimated model coefficients or the change of the
prediction accuracy (i.e. the model error) by permuting variable values
may provide strong indicators for the importance of each input variable.

∙ Linear Regression Models: In linear regression models, p-values
can be taken to analyze the significance of a variable. However,
statistical significance does not automatically mean a large impact of
the variable on the result. The values of the regression coefficients
can be compared instead. Larger coefficient values account for larger
impact of the corresponding variable for the outcome. This has to
be used carefully, especially if the scales of variables differ. The
data must be standardized first, to enable a safe comparison of the
regression coefficients to judge the variables importance.

∙ Random Forest: Variable importance can be estimated by comput-
ing the out-of-bag error first. Afterwards a permutation of the values

8 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



of one variable is computed randomly. This keeps the distribution of
the values equal. In the next step the out-of-bag error is computed
again and the result compared to the initial out-of-bag error. If the
error (e.g., mean squared error) varies a lot, the variable can be seen
as important. With this process, a ranking of the importance of the
variables can be computed.

∙ Kriging: The width parameter 𝜃𝑖 determines how far the influence
of each sample point spreads in dimension 𝑖. In detail, the larger
the width parameter is, the faster are the potential changes in the
predicted value. The smaller the width parameter is, the slower are
the potential changes in the prediction. The descending order of the
𝜃 values give an indicator of the variable importance.

Experiments

Our stated hypothesis is tested by performing a benchmark on the S-
Ring problem. The performance of a random search algorithm will be
added as a baseline comparison. All four metaheuristic algorithms and
further the surrogate-assisted optimization with three different models
are compared on basis of their total objective function evaluations to
simulate the performance on a possible expensive function. Thus, the
smallest number of evaluations is set to 100, which is a common limit for
optimization of expensive objective functions. The maximum number of
tested evaluations for the metaheuristics is set to 1𝑒+5 to see the convergence
behavior on the objective function. The maximum number of surrogate-
assisted optimization runs are limited to 1000 total objective function
evaluations and 10 percent of this budget are used for the initial latin
hypercube sampling. A single optimization iteration can, due to the model
fitting, model optimization and prediction, become very computationally
expensive for large sample sizes. As all tested algorithms are stochastic, each
experiment is repeated 20 times. As previously mentioned, for all tested
algorithms the parameter settings, beside the iterations and populations
size to set an exact number of evaluations, are not changed and use the
pre-set default settings. The experimental setup is summarized in table
2.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 9



Table 2: Experimental Setup

Algorithm No. Evaluations popSize maxIter

𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑎𝑟𝑐ℎ 100, 1000, 1𝑒+5 100, 1000, 1𝑒+5 1

Metaheuristics:

𝐺𝑒𝑛𝑆𝐴 100, 200, 500, 1000, 1𝑒+5 / /
𝐷𝐸𝑜𝑝𝑡𝑖𝑚 100, 200, 500, 1000, 1𝑒+5 5,5,10,10,100 9,19,24,49,499

𝐺𝐴 100, 200, 500, 1000, 1𝑒+5 10,10,20,50,50 10,20,25,20,2000
𝑔𝑒𝑛𝑜𝑢𝑑 100, 200, 500, 1000, 1𝑒+5 10,10,20,50,1000 10,20,25,20,100

Surrogate-Assisted:
Model No. Evaluations initDesignSize Optimizer

𝑆𝑒𝑐𝑜𝑛𝑑𝑂𝑟𝑑𝑒𝑟𝐿𝑀 100, 200, 500, 1000 10,20,50,100 DEoptim
𝑅𝑎𝑛𝑑𝑜𝑚𝐹 𝑜𝑟𝑒𝑠𝑡 100, 200, 500, 1000 10,20,50,100 DEoptim

𝐾𝑟𝑖𝑔𝑖𝑛𝑔 100, 200, 500, 1000 10,20,50,100 DEoptim

Results and Discussion

Benchmark Comparison

Figure 2 shows the benchmark results for the different combinations of
algorithms and number of evaluations:

∙ Metaheuristics: For 100 evaluations, GA and genoud perform
better than random search, while DEoptim and GenSA show inferior
results. The methods significantly improve with a rising number of
evaluations and are able to outperform random search. For instance,
for 1000 evaluations, most method (except GenSA) perform better
than the random search method, which is also the case for 1𝑒+5
evaluations. The long run results (1𝑒+5) also indicate that GenSA
and DEoptim seem to converge to a global optimum, while genoud and
GA show significantly inferior results. A large number of evaluations
seems to benefit GenSA the most, as with less evaluations it is in all
cases outperformed by the other algorithms. This can be strongly
connected to the chosen default parameter settings.

10 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



∙ Surrogate-Assisted Optimization: For 100 evaluations, the surrogate-
assisted optimization outperforms the metaheuristics significantly.
Particular Kriging is performing on a level equivalent to this of 1000
random search evaluations and near 500 metaheuristic evaluations.
This picture becomes even clearer for 200 evaluations, where Kriging
again improves and surpasses random search with 1000 evaluations.
For 1000 evaluations, Kriging reaches the level of 1𝑒+5 random search
evaluations and thus outperforms all metaheuristic algorithms on this
level. The second-order linear model also performs well, but is not
able to show considerable improvements in comparison to the meta-
heuristics.Random forest shows poor results for larger evaluations
sizes, where it is inferior to random search.

The good results of the Kriging surrogates can be explained by their strong
ability of fitting non-linear landscapes and their general good interpolation
ability. While the second-order linear model can fit non-linear behavior
so a certain extend, they are not fit to build global surrogates of highly
multi-modal landscapes. The poor performance of random forest is due
to the pure continuous nature of the problem and the bad interpolation
abilities of these models.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 11



●

●

● ●

● ● ●

●

● ●

●

●●

●●●

●

DEoptim.100
GA.100

genoud.100
GenSA.100

RS.100
surrKR.100
surrRF.100
surrSO.100

DEoptim.200
GA.200

genoud.200
GenSA.200
surrKR.200
surrRF.200
surrSO.200

DEoptim.500
GA.500

genoud.500
GenSA.500
surrKR.500
surrRF.500
surrSO.500

DEoptim.1000
GA.1000

genoud.1000
GenSA.1000

RS.1000
surrKR.1000
surrRF.1000
surrSO.1000

DEoptim.100000
GA.100000

genoud.100000
GenSA.100000

RS.100000

2.30 2.35 2.40 2.45 2.50 2.55

Figure 2: S-Ring Simulator Benchmark Results. The algorithms with their
respective number of evaluations are shown on the y-axis, the x-axis

shows the achieved fitness. SurrSO uses the second order model,
SurrRF the random forest model and SurrKR the Kriging model. The
vertical lines represent the baseline, where the solid line is the median
random search fitness for 100, the dashed line for 1000 and the pointed

line for 100000 evaluations

12 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



Model Variable Importance

To check the usefulness of the variable importance, we used three of the
best models, which were fitted with 1000 evaluations.

∙ The second-order linear model has a multiple R-squared of 0.869
and an adjusted R-squared 0.8611, thus it is able to explain a high
extent of the underlying variance. It contains a large number of
60 model terms, including main effects, interactions and quadratic
effects, where the p-values indicate a high importance. Due to this
high number of terms, an additional analysis is needed to extract the
importance variables. At this point, as we are not able to validate
the results in terms of their usefulness, we decided not to conduct
any further analysis.

∙ The random forest model has a mean of squared residuals of 0.129
and explains 71.44 percent of the variance. The mean decrease in
MSE is shown in table 3 and compared to the results of Kriging.

∙ The estimated activity parameters (theta) are shown in table 3.

Table 3: Variable importance

Weight RF Mean MSE Decrease Kriging theta values
1 117.31366 3.82746
2 9.83143 1e-04
3 59.79332 1.15356
4 17.86245 0.4643613
5 11.06656 0.2711343
6 14.05440 0.001178616
7 64.32869 2.221088
8 64.86968 1.164819
9 34.63966 1.8983
10 47.50249 3.45285

Table 3 indicates, that at least the most important weight (No. 1) and
the least important weight (No. 2) are the same for both the Kriging and
random forest model. The other weights also show some correlation. The

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 13



variable importance comparison shows, that the models are able to extract
knowledge beyond the best found parameter setting. To validate the given
results, we will need to use a designated experimental design, which will
be part of future research.

Computation Time Comparison

An important aspect of every optimization technique is the total compu-
tation time. Table 4 shows approximated values for the metaheuristics
and the surrogate-assisted optimization with the respective models. As
the problem itself has nearly no computation time, the indicated values
are mainly caused by the optimization algorithms. As the values indicate,
surrogate-assisted optimization is in comparison very expensive. The model
fitting, updating and optimization process is computationally expensive,
particularly for a higher number of samples. This is especially visible for
Kriging, which is very sensitive to higher sample sizes.

Table 4: Algorithm Computation Time. All values are approximated.

Algorithm No. Evaluations Computation Time
S-Ring Problem C 1 < 0.001 seconds
S-Ring Problem R 1 < 1 second

Metaheuristics 100 0.1 second
Metaheuristics 1000 1 second
Metaheuristics 1𝑒+5 1-2 minutes

surrRF 100 1 minute
surrSO 100 4 minutes
surrKR 100 8 minutes
surrRF 1000 1 hour
surrSO 1000 4 hours
surrKR 1000 > 1 day

At this point, we also have to consider that the SPOT implementation is
a R-framework, which is in terms of computation time much inferior to

14 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



C or C++ based implementations. For instance, a re-implementation of
the S-Ring simulator in R, which is normally implemented in C, is about
1000 times slower. We can assume, that an optimized version would be
significant faster. Moreover, SPO performs sequential optimization, while
the metaheuristics are able to conduct parallel evaluations.

Conclusion

In accordance to our hypotheses, the results show that surrogate-assisted
optimization is a beneficial approach for the underlying NN control op-
timization task. The tested algorithms were capable of outperforming
metaheuristic optimization methods. Furthermore, the surrogate can be
used for significance analysis of the inputs and weighted connections to
further exploit problem information. We can thus assume that surrogate-
assisted optimization is able to provide a greater understanding of the
learning process. The clear downside of the surrogate-assisted optimization
is the large computation time, which is more than 10000 times larger
than these of metaheuristic optimization. However, this huge downside
becomes less significant in scenarios where the objective function evalu-
ations become very expensive, e.g., in the area of several minutes. The
model fitting and optimization process could be conducted simultaneously
to the real-time evaluations. Also, not considered here are optimized and
parallel surrogate-assisted approaches, which could considerable improve
the computation time. In this study, we used the default parameters for
all given algorithms, whereby no extensive research was made to optimize
the SPOT default parameters, while the metaheuristic implementations
default parameters are commonly optimized or include self-adaptive proce-
dures to show comparable results. An extended study to identify generally
good settings for large set of problems could be helpful to further improve
general performance. In future research, we will test the applicability to
a larger range of difficult problems from the area of artificial intelligence
and evolutionary robotics. Moreover, we will study the usefulness of the
extracted variable importance for evolutionary robotics.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 15



Acknowledgements

This work is part of a project that has received funding from the Euro-
pean Unions Horizon 2020 research and innovation program under grant
agreement no. 692286.

References

[1] T. Back. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford uni-
versity press, 1996.

[2] T. Bartz-Beielstein, C. W. Lasarczyk, and M. Preuß. Sequential
parameter optimization. In Evolutionary Computation, 2005. The
2005 IEEE Congress on, volume 1, pages 773–780. IEEE, 2005.

[3] T. Bartz-Beielstein, M. Preuss, and S. Markon. Validation and opti-
mization of an elevator simulation model with modern search heuristics.
Metaheuristics: Progress as Real Problem Solvers, pages 109–128, 2005.

[4] J. C. Bongard. Evolutionary robotics. Communications of the ACM,
56(8):74–83, 2013.

[5] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

[6] Á. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter con-
trol in evolutionary algorithms. IEEE Transactions on evolutionary
computation, 3(2):124–141, 1999.

[7] O. Flasch, T. Bartz-Beielstein, A. Davtyan, P. Koch, W. Konen, T. D.
Oyetoyan, and M. Tamutan. Comparing ci methods for prediction
models in environmental engineering. In Proc. of CEC, 2010.

[8] A. Forrester, A. Sobester, and A. Keane. Engineering Design via
Surrogate Modelling. Wiley, 2008.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. science, 220(4598):671–680, 1983.

16 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



[10] A. Liaw and M. Wiener. Classification and Regression by randomForest.
R News, 2(3):18–22, 2002.

[11] W. R. Mebane Jr and J. S. Sekhon. Genetic optimization using
derivatives: the rgenoud package for r. Journal of Statistical Software,
42(11):1–26, 2011.

[12] K. M. Mullen. Continuous global optimization in r. Journal of
Statistical Software, 60(6):1–45, 2014.

[13] K. M. Mullen, D. Ardia, D. L. Gil, D. Windover, and J. Cline. Deoptim:
An r package for global optimization by differential evolution. 2009.

[14] Y. S. Ong, P. B. Nair, and A. J. Keane. Evolutionary optimization of
computationally expensive problems via surrogate modeling. AIAA
journal, 41(4):687–696, 2003.

[15] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and
P. K. Tucker. Surrogate-based analysis and optimization. Progress in
aerospace sciences, 41(1):1–28, 2005.

[16] L. Scrucca. Ga: a package for genetic algorithms in r. Journal of
Statistical Software, 53(4):1–37, 2013.

[17] J. S. Sekhon and W. R. Mebane. Genetic optimization using derivatives.
Political Analysis, 7:187–210, 1998.

[18] K. O. Stanley and R. Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary computation, 10(2):99–127, 2002.

[19] R. Storn and K. Price. Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. Journal of
global optimization, 11(4):341–359, 1997.

[20] Y. Xiang, S. Gubian, B. Suomela, and J. Hoeng. Generalized simulated
annealing for global optimization: The gensa package. R Journal, 5(1),
2013.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 17





Kontakt/Impressum
Diese Veröffentlichungen erscheinen im Rahmen der Schriftenreihe "CIplus". Alle Veröf-fentlichungen dieser Reihe können unter
https://cos.bibl.th-koeln.de/homeabgerufen werden.
Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.Datum der Veröffentlichung: 18.12.2017
Herausgeber / Editorship
Prof. Dr. Thomas Bartz-Beielstein,Prof. Dr. Wolfgang Konen,Prof. Dr. Boris Naujoks,Prof. Dr. Horst StenzelInstitute of Computer Science,Faculty of Computer Science and Engineering Science,TH Köln,Steinmüllerallee 1,51643 Gummersbachurl: www.ciplus-research.de

Schriftleitung und Ansprechpartner/ Contact editor’s office
Prof. Dr. Thomas Bartz-Beielstein,Institute of Computer Science,Faculty of Computer Science and Engineering Science,TH Köln,Steinmüllerallee 1, 51643 Gummersbachphone: +49 2261 8196 6391url: http://www.spotseven.deeMail: thomas.bartz-beielstein@th-koeln.de
ISSN (online) 2194-2870

https://cos.bibl.th-koeln.de/home
www.ciplus-research.de
http://www.spotseven.de


This project has received funding from the European Union’s Horizon 2020research and innovation programme under grant agreement No 692286.


