
CIplus
Band 8/2020

Continuous Optimization Benchmarks
by Simulation

Martin Zaefferer, Frederik Rehbach

Continuous Optimization Benchmarks by
Simulation?

Martin Zaefferer and Frederik Rehbach

Institute for Data Science, Engineering, and Analytics,
TH Köln, 51643 Gummersbach, Germany

{martin.zaefferer,frederik.rehbach}@th-koeln.de

Abstract. Benchmark experiments are required to test, compare, tune,
and understand optimization algorithms. Ideally, benchmark problems
closely reflect real-world problem behavior. Yet, real-world problems are
not always readily available for benchmarking. For example, evaluation
costs may be too high, or resources are unavailable (e.g., software or
equipment). As a solution, data from previous evaluations can be used to
train surrogate models which are then used for benchmarking. The goal
is to generate test functions on which the performance of an algorithm is
similar to that on the real-world objective function. However, predictions
from data-driven models tend to be smoother than the ground-truth from
which the training data is derived. This is especially problematic when
the training data becomes sparse. The resulting benchmarks may not
reflect the landscape features of the ground-truth, are too easy, and may
lead to biased conclusions.
To resolve this, we use simulation of Gaussian processes instead of estima-
tion (or prediction). This retains the covariance properties estimated dur-
ing model training. While previous research suggested a decomposition-
based approach for a small-scale, discrete problem, we show that the
spectral simulation method enables simulation for continuous optimiza-
tion problems. In a set of experiments1 with an artificial ground-truth,
we demonstrate that this yields more accurate benchmarks than simply
predicting with the Gaussian process model.

Keywords: Simulation, Benchmarking, Test Function, Continuous Op-
timization, Gaussian Process Regression, Kriging

1 Introduction

For the design and development of optimization algorithms, benchmarks are in-
dispensable. Benchmarks are required to test hypotheses about algorithm behav-
ior, to understand the impact of algorithm parameters, to tune those parameters,

? The final authenticated version is available online at https://doi.org/10.1007/

978-3-030-58112-1_19
1 Reproducible code and a complete set of the presented figures is provided at
https://github.com/martinzaefferer/zaef20b. For easily accessible interfaces
and demonstrations see https://github.com/martinzaefferer/COBBS.

2 M. Zaefferer and F. Rehbach

or to compare algorithms with each other. Multiple benchmarking frameworks
exist, with BBOB/COCO being a prominent example [11,12].

One issue of benchmarks is their relevance to real-world problems. The em-
ployed test functions may be of an artificial nature, yet should reflect the behav-
ior of algorithms on real-world problems. An algorithm’s performance on test
functions and real-world problems should be similar. Yet, real-world problems
may not be available in terms of functions, but only as data (i.e., observations
from previous experiments). This can be due to real objective function evalua-
tions being too costly or not accessible (in terms of software or equipment).

In those cases, using a data-driven approach may be a viable alternative: sur-
rogate models can be trained and subsequently used to benchmark algorithms.
The intent is not to replace artificial benchmarks such as BBOB (which have
their own advantages), but rather to augment them with problems that have
a closer connection to real-world problems. This approach has been considered
in previous investigations [18,17,2,8,7,5]. Additionally, recent benchmark suites
offer access to real-world problems, e.g., the Computational Fluid Dynamics
(CFD) test problem suite [6] and the Games Benchmark for Evolutionary Algo-
rithms (GBEA) [20]. Notably, the authors of the GBEA accept data provided
by other researchers as a basis for surrogate model-based benchmarking2.

As pointed out by Zaefferer et al. [23], surrogate model-based benchmarks
face a crucial issue: the employed machine learning models may smoothen the
training data, especially if the training data is sparse. Hence, these models are
prone to produce optimization problems that lack the ruggedness and difficulty
of the underlying real-world problems. Thus, algorithm performances may be
overrated, and comparisons become biased. Focusing on a discrete optimization
problem from the field of computational biology, Zaefferer et al. proposed to
address this issue via simulation with Gaussian Process Regression (GPR). In
contrast to estimation (or prediction) with GPR, simulation may provide a more
realistic assessment of an algorithm’s behavior. The response of the simulation
retains the covariance properties determined by the model [15].

The decomposition-based simulation approach used by Zaefferer et al. relies
on the selection of a set of simulation samples [23]. The simulation is evaluated
at these sample locations. The simulation samples are distinct from and less
sparse than the observed training samples. They are not restricted by evaluation
costs. Still, using a very large number of simulation samples can quickly become
computationally infeasible. In small discrete search spaces, all samples in the
search space can be simulated. In larger search spaces, the simulation has to be
interpolated between the simulation samples. The interpolation step might again
introduce undesirable smoothness. Thus, decomposition-based simulation may
work well for (small-scale) combinatorial optimization problems. Conversely, it
is not suited for continuous benchmarks. Hence, our research questions are:

Q1 How can simulation with GPR models be used to generate benchmarks for
continuous optimization?

2 See the GBEA website, at http://www.gm.fh-koeln.de/~naujoks/gbea/

gamesbench_doc.html#subdata. Accessed on 2020-08-03.

Continuous Optimization Benchmarks by Simulation 3

Q2 Do simulation-based benchmarks provide better results than estimation-
based benchmarks, for continuous optimization?

For Q1, we investigate the spectral method for GPR-simulation [4]. The required
background on GPR, estimation, and simulation is given in section 2. Then, we
describe a benchmark experiment to answer Q2 in section 3, and the results
in section 4. The employed code is made available. We discuss critical issues of
GPR and simulation in section 5. Section 6 concludes the paper with a summary
and outlook.

2 Gaussian Processes Regression

In the following, we assume that we deal with an objective function f(x), which
is expensive to evaluate or has otherwise limited availability. Here, x ∈ Rn

are the variables of the optimization problem. Respectively, we have to learn
models that regress data sets with m training samples X = {x1, . . . ,xm}, and
the corresponding observations y ∈ Rm, with yj = f(xj), and j = 1, . . . ,m.

2.1 Gaussian Process Regression

GPR (also known as Kriging) assumes that the training data X, y is sam-
pled from a stochastic process of Gaussian distribution. Internally, it interprets
data based on their correlations. These correlations are determined by a kernel
k(x,x′). A frequently chosen kernel is

k(x,x′) = exp

(
n∑

i=1

−θi|xi − x′i|2
)
. (1)

Here, θi ∈ R is a parameter that is usually determined by Maximum Likelihood
Estimation (MLE). In the following, we assume that the model has already
been trained via MLE, based on the data X, y. The kernel k(x,x′) yields the
correlation matrix K, which collects all pairwise correlations of the training
samples X. The vector of correlations between each training sample xj , and a
single, new sample x is denoted by k. Further details on GPR, including model
training by MLE, are given by Forrester et al. [9].

In the context of GPR, the term estimation denotes the prediction of the
model at some unknown, new location. It is performed with the predictor

ŷ(x) = µ̂+ kTK−1(y − 1µ̂). (2)

Here, 1 is a vector of ones and the parameter µ̂ is determined by MLE. Estima-
tion intends to give an accurate response value at a single location x.

2.2 Simulation by Decomposition

Conversely to estimation, simulation intends to reproduce the covariance struc-
ture of a set of samples as accurately as possible [14,4]. Intuitively, this is exactly
what we require for the generation of optimization benchmarks: We are interested
in the topology of the landscape (here: captured by the covariance structure),
rather than accurate predictions of isolated function values [17].

4 M. Zaefferer and F. Rehbach

One approach towards simulation is based on the decomposition of a covari-
ance matrix Cs [4]. This matrix is computed for a set of nsim simulation samples
Xs = {x1, ...,xnsim

}, with xt ∈ Rn and t = 1, ..., nsim. Here, nsim is usually much
larger than the number of training samples m. Using eq. (1), Xs yields the corre-
lation matrix Ks of all simulation samples, and the respective covariance matrix
is Cs = σ̂2Ks. Here, σ̂2 is a model parameter (determined by MLE). Decom-
position can, e.g., be performed with the Cholesky decomposition Cs = LLT .
This yields the unconditionally simulated values ŷs = 1µ̂ + Lε, where ε is a
vector of independent normal-distributed random samples, εi ∼ N(0, 1). In this
context, ‘unconditional’ means that the simulation reproduces only the covari-
ance structure, but not the observed values y. Additional steps are required for
conditioning, so that the observed values are reproduced, too [4].

Obviously, the simulation only produces a discrete number of values ŷs, at
specific locations Xs. Initially, we do not know the locations where our opti-
mization algorithms will attempt to evaluate the test function. Hence, subse-
quent evaluations at arbitrary locations rely on interpolation. The predictor
from eq. (2) can be used, replacing all values linked to the training data with
the respective values from the simulation (Xs, ŷs, Ks instead of X, y, K). The
model parameters σ̂2, µ̂, and θi remain unchanged.

Unfortunately, this interpolation step is a critical weakness when applied
to continuous optimization problems. The locations Xs have to be sufficiently
dense, to avoid that the interpolation introduces undesirable smoothness. Yet,
computational restrictions limit the density of Xs. Even a rather sparse grid
of 20 samples in each dimension requires m = 20n simulated samples. Then,
Cs is of dimension 20n × 20n, which is prohibitively large in terms of memory
consumption for n ≥ 4. Even a mildly multimodal function may easily require
a much denser sample grid. This renders the approach infeasible for continuous
optimization problems with anything but the lowest dimensionalities.

2.3 Simulation by the Spectral Method

Following up on [23], we investigate a different simulation approach that is well
suited for continuous optimization problems: the spectral method [4]. This ap-
proach directly generates a function that can be evaluated at arbitrary locations,
without interpolation. It yields a superposition of cosine functions [4],

fs(x) = σ̂

√
2

N

N∑

v=1

cos(ωv · x + φv),

with φv being an i.i.d. uniform random sample from the interval [−π, π]. The
sampling of ωv requires the spectral density function of the GPR model’s ker-
nel [4,15]. That is, ωv ∈ Rn are i.i.d. random samples from a distribution
with that same density. For the kernel from eq. (1), the respective distribu-
tion for the i-th dimension is the normal distribution with zero mean and vari-
ance 2θi. A simulation conditioned on the training data can be generated with
fsc(x) = fs(x) + ŷ∗(x) [4], where ŷ∗(x) = µ̂+ kTK−1(ysc − 1µ̂) is the predictor
from eq. (2) with the training observations y replaced by ysc, and µ̂ = 0. Here,

Continuous Optimization Benchmarks by Simulation 5

●

● ●
●

●

●
●

●
●

● ●

−2

0

2

4

0.00 0.25 0.50 0.75 1.00
x

f(
x)

ground truth
 &

 estim
ation

●

● ●
●

●

●
●

●
●

● ●

−2

0

2

4

0.00 0.25 0.50 0.75 1.00
x

f(
x)

unconditional
 sim

ulation

●

● ●
●

●

●
●

●
●

● ●

−2

0

2

4

0.00 0.25 0.50 0.75 1.00
x

f(
x)

conditional
 sim

ulation

Fig. 1. Top: Ground-truth f(x) (dashed line), training data (circles), and GPR model
estimation (gray solid line). Middle: Three instances of an unconditional simulation
(same model). Bottom: Three instances of a conditional simulation (same model). The
three different instances are generated by re-sampling of ωv and φv.

ysc are the unconditionally simulated values at the training samples, that is,
yscj = fs(xj).

2.4 Simulation for Benchmarking

To employ these simulations in a benchmarking context, we roughly follow the
approach by Zaefferer et al. [23]. First, a data set is created by evaluating the
true underlying problem (if not already available in the form of historical data).
Then, a GPR model is trained with that data. Afterwards, the spectral method
is used to generate conditional or unconditional simulations. These simulations
are finally used as test functions for optimization algorithms.

Here, the advantage of simulation over estimation is the ability to reproduce
the topology of functions, rather than predicting a single, isolated value. As an
illustration, let us assume an example for n = 1, where the ground-truth is
f(x) = sin(33x) + sin(49x− 0.5) + x. A GPR model is trained with the samples
X = {0.13, 0.6, 0.62, 0.67, 0.75, 0.79, 0.8, 0.86, 0.9, 0.95, 0.98}. The resulting esti-
mation, unconditional simulation, and conditional simulation of the GPR model
are presented in fig. 1. This example shows how estimation might be unsuited to
reproduce an optimization algorithm’s behavior. In the sparsely sampled region,
the GPR estimation is close to constant, considerably reducing the number of
local optima in the (estimated) search landscape. The number of optima in the
simulated search landscapes is considerably larger.

6 M. Zaefferer and F. Rehbach

3 Experimental Setup

In the following, we describe an experiment that compares test functions pro-
duced by estimation and simulation with GPR.

3.1 Selecting the Ground-Truth

A set of objective functions is required as a ground-truth for our experiments. In
practice, the ground-truth would be a real-world optimization problem. Yet, a
real-world case would limit the comparability, understandability, and the extent
of the experimental investigation. We want to understand where and why our
emulation deviates from the ground-truth. This situation reflects the need for
model-based benchmarks.

Hence, we chose a well-established artificial benchmark suite for optimization:
the single-objective, noiseless BBOB suite from the COCO framework [11,12].
The BBOB suite allows us to compare in-detail how algorithms behave on the
actual problem (ground-truth) and how they behave on an estimation or simula-
tion with GPR. Moreover, important landscape features of the BBOB suite are
known (e.g., modality, symmetry/periodicity, separability), which enables us to
understand and explain where GPR models fail.

The function set that we investigated is described in [13]. This set consists
of 24 unimodal and multimodal functions. For each function, 15 randomized
instances are usually produced. We followed the same convention. In addition,
all test functions are scalable in terms of search space dimensionality n. We
performed our experiments with n = 2, 3, 5, 10, 20.

3.2 Generating the Training Data

We generated training data by running an optimization algorithm on the origi-
nal problem. The data observed during the optimization run was used to train
the GPR model. This imitates a common scenario that occurs in real-world ap-
plications: Some algorithm has already been run on the real-world problem, and
the data from that preliminary experiment provides the basis for benchmarking.
Moreover, this approach allows us to determine the behavior of the problem
on a local and global scale. An optimization algorithm (especially, a population-
based evolutionary algorithm) will explore the objective function globally as well
as performing smaller, local search steps.

Specifically, we generated our training data as follows: For each BBOB func-
tion (1, ..., 24) and each function instance (1, ..., 15), we ran a variant of Dif-
ferential Evolution (DE) [19] with 50n function evaluations, and a population
size of 20n. All evaluations were recorded. We used the implementation from
the DEoptim R-package, with default configuration [1]. This choice is arbitrary.
Other population-based algorithms would be equally suited for our purposes.

3.3 Generating the Model

We selected the 50n data samples provided by the DE runs. Based on that data,
we trained a GPR model, using the SPOT R-package [3]. Three non-default
parameters of the model were specified with: useLambda=FALSE (no nugget ef-
fect, see also [9]), thetaLower=1e-6 (lower bound on θi), and thetaUpper=1e12

Continuous Optimization Benchmarks by Simulation 7

(upper bound on θi). For the spectral simulation, we used N = 100n cosine func-
tions. We only created conditional simulations, to reflect each BBOB instance
as closely as possible. Scenarios where an unconditional simulation is preferable
have been discussed by Zaefferer et al. [23].

3.4 Testing the Algorithms

We tested three algorithms:
– DE: As a global search strategy, we selected DE. We tested the same DE

variant as mentioned in section 3.2, but with a population size of 10n and a
different random number generator seed for initialization. All other algorithm
parameters remained at default values.

– NM: As a classical local search strategy, the Nelder-Mead (NM) simplex
algorithm was selected [16]. We employed the implementation from the R-
package nloptr [22]. All algorithm parameters remained at default values.

– RS: We also selected a Random Search (RS) algorithm, which evaluates the
objective function with i.i.d. samples from a uniform random distribution.
This selection was to some extent arbitrary. The intent was not to investigate

these specific algorithms. Rather, we selected these algorithms to observe a range
of different convergence behaviors. Essentially, we made a selection that scales
from very explorative (RS), to balanced exploration/exploitation (DE), to very
exploitative (NM).

All three algorithms receive the same test instances and initial random num-
ber generator seeds. For each test instance, each algorithm uses 1000n function
evaluations. Overall, each algorithm was run on each instance, function, and di-
mension of the BBOB test suite (24× 15× 5 = 1800 runs, each run with 1000n
evaluations). Additionally, each of these runs was repeated with an estimation-
based test function, and with a simulation-based test function.

4 Results

4.1 Quality Measure

Our aim is to measure how well algorithm performance is reproduced by the test
functions. One option would be to measure the error as the difference of observed
values along the search path compared to the ground-truth values at those same
locations. But this is problematic. Let us assume that the ground truth is f(x) =
x2, and two test functions are ft1(x) = (x− 1)2 and ft2(x) = 0.5, with x ∈ [0, 1].
Clearly, ft1 is a reasonable oracle for most algorithms’ performance (e.g., in terms
of convergence speed) while ft2 is not. Yet, the mean squared error of ft1 would
usually be larger than the error of ft2. The error on ft1 even increases when an
algorithm approaches the optimum.

Hence, we measured the error on the performance curves. For each algo-
rithm run, the best observed function values after each objective function evalu-
ation were recorded (on all test instances, including estimation, simulation, and
ground-truth). In the following, this will be referred to as the performance of
the algorithm. The resulting performance values were scaled to values between

8 M. Zaefferer and F. Rehbach

zero and one, for each problem instance (i.e., each BBOB function, each BBOB
instance, each dimension, and also separately for the ground-truth, estimation,
and simulation variants). This yielded what we term the scaled performance. The
error of the scaled performance was then calculated as the absolute deviation
of the performance on the model-based functions, compared to the performance
on the ground-truth problem. For example, let us assume that DE achieved a
(scaled) function value on the ground-truth of 0.25 after 200 objective function
evaluations. But the same algorithm only achieved 0.34 on the estimation-based
test function after 200 evaluations. Then, the error of the estimation-based run
is |0.34− 0.25| = 0.09 (after 200 evaluations).

4.2 Observations

In figs. 2 and 3, we show the resulting errors over run time for a subset of the 24
BBOB functions. Due to space restrictions, we only show the error for the DE
and NM algorithms. Similar patterns are visible in the omitted curves for RS.
We also omit the curves for n = 3, which closely mirror those for n = 2.

For the simulation, we mostly observe decreasing errors or constant errors
over time. The decrease can be explained by the algorithms’ tendency to find the
best values for the respective problem instance later on in the run, regardless of
the objective function. Earlier, the difference is usually larger. For the estimation-
based test functions, the error often increases, and sometimes decreases again
during the later stages of a run.

When comparing estimation and simulation, the modality and the dimen-
sionality n are important. For low-dimensional unimodal BBOB functions (n =
2, 3, 5, and function IDs: 1, 2, 5-7, 10-14), the simulation yields larger errors
than estimation. In most of the multimodal cases, the simulation seems to per-
form equally well or better. This can be explained: The larger activity of the
simulation-based functions may occasionally introduce additional optima (turn-
ing unimodal into multimodal problems). The estimation is more likely to re-
produce the single valley of the ground-truth. Conversely, the simulation excels
for the multimodal cases because it does not remove optima by interpolation.
For higher-dimensional cases (n = 10, 20), this situation changes: the simulation
produces lower errors, regardless of modality. This is explained by the increas-
ing sparseness of the training data, which in case of estimation will frequently
lead to extremely poor search landscapes. The estimation will mostly produce a
constant value, with the exception of very small areas close to the training data.

As noted earlier, results between DE, RS, and NM exhibit similar patterns.
There is an exception, where the results between DE, NM, and RS differ more
strongly: BBOB function 21 and 22. Hence, fig. 4 shows results for n = 20 with
function 21 (22 is nearly identical). Here, each plot shows the error for a dif-
ferent algorithm. Coincidentally, this includes the only case where estimation is
performing considerably better than simulation for large n (with algorithm RS
only). The reason is not perfectly clear. One possibility is a particularly poor
model quality. BBOB functions 21 and 22 are both based on a mixture of Gaus-
sian components. Two aspects of this mixture are problematic for GPR: Firstly,
they exhibit a peculiar, localized non-stationarity. The activity of the function

Continuous Optimization Benchmarks by Simulation 9

F
: 1

F
: 2

F
: 3

F
: 7

F
: 8

F
: 15

F
: 16

F
: 20

F
: 21

F
: 23

F
: 24

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75
1.00

0.00
0.01
0.02
0.03
0.04

0.00

0.02

0.04

0.00
0.05
0.10
0.15
0.20

0.0
0.1
0.2
0.3
0.4
0.5

0.0

0.2

0.4

0.0
0.1
0.2
0.3
0.4

0.00
0.25
0.50
0.75
1.00

0.00
0.05
0.10
0.15
0.20

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75

0.000
0.001
0.002
0.003
0.004

0.00
0.01
0.02
0.03
0.04

0.0
0.2
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3

0.0
0.1
0.2
0.3

0.0
0.2
0.4
0.6

0.000
0.025
0.050
0.075
0.100

0.0
0.2
0.4
0.6

0.00
0.25
0.50
0.75

0.0
0.2
0.4
0.6

evaluations / n

er
ro

r

method estimation simulation

n: 2 n: 5 n: 10 n: 20

Fig. 2. The error of algorithm performance with simulation- and estimation-based test
functions. The curves are based on the performance of a DE run on the model-based
test functions, compared against the performance values on the ground-truth, i.e., the
respective BBOB functions. The labels on the right-hand side specify the respective
IDs of the BBOB functions. Top-side labels indicate dimensionality. The lines indicate
the median, the colored areas indicate the first and third quartile. These statistics are
calculated over the 15 instances for each BBOB function.

may abruptly change direction, depending on the closest Gaussian component.
Secondly, overlapping Gaussian components produce discontinuities.

10 M. Zaefferer and F. Rehbach

F
: 1

F
: 2

F
: 3

F
: 7

F
: 8

F
: 15

F
: 16

F
: 20

F
: 21

F
: 23

F
: 24

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.0
0.2
0.4
0.6
0.8

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.05
0.10
0.15
0.20

0.00
0.02
0.04
0.06

0.0
0.1
0.2
0.3

0.0
0.1
0.2
0.3

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.00
0.25
0.50
0.75
1.00

0.0

0.1

0.2

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.01
0.02

0.00
0.02
0.04
0.06

0.0
0.2
0.4
0.6

0.0

0.2

0.4

0.0
0.1
0.2
0.3

0.0
0.1
0.2
0.3
0.4

0.0
0.2
0.4
0.6

0.0

0.1

0.2

0.0

0.2

0.4

0.00
0.25
0.50
0.75
1.00

0.0
0.2
0.4
0.6

evaluations / n

er
ro

r

method estimation simulation

n: 2 n: 5 n: 10 n: 20

Fig. 3. This is the same plot-type as presented in fig. 2, but only for the performance
of the NM algorithm (instead of DE).

5 Discussion

The results show that the model-based test functions will occasionally deviate
considerably from the ground-truth. This has various reasons.
– Dimensionality: Clearly, all models are affected by the curse of dimension-

ality. With 10 or more variables, it becomes increasingly difficult to learn
the shape of the real function with a limited number of training samples.
Necessarily, this limits how much we can achieve. Despite its more robust
performance, simulation also relies on a well-trained model.

Continuous Optimization Benchmarks by Simulation 11

DE NM RS

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0.0

0.1

0.2

0.3

0.4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

evaluations / n

er
ro

r

method estimation simulation

Fig. 4. This is the same plot-type as presented in fig. 2, but limited to BBOB function
21 and n = 20. While fig. 2 only shows results for DE, this figure compares results for
each tested algorithm (DE, NM, RS) for this specific function and dimensionality.

– Continuity: Our GPR model, or more specifically its kernel, works best if
the ground-truth is continuous, i.e., limx→x′ f(x) = f(x′). Else, model quality
decreases. One example is the step ellipsoidal function (BBOB function 7).
This weakness could be alleviated, if it is known a-priori: a more appropriate
kernel such as the exponential kernel k(x,x′) = exp(

∑n
i=1−θi|xi−x′i|) could

be used. However, this kernel may be less suited for the spectral simulation
method [4].

– Non-stationarity: Our GPR models assume stationarity of the covariance
structure in the data. Yet, some functions are obviously non-stationary. For
example, the BBOB variant of the Schwefel function (BBOB function 20)
behaves entirely differently close to the search boundaries compared to the
optimal region (due to a penalty term). In another way, the two Gallagher’s
Gaussian functions (BBOB functions 21, 22) show a more localized type of
non-stationarity. There, the activity of the function will change direction
depending on the closest Gaussian component. Such functions are particu-
larly difficult to model with common GPR models. Non-stationary variants
of GPR exist, and might be better suited. A good choice might be an ap-
proach based on clustering [21]. Adapting the spectral method to that case is
straight-forward. The simulations from individual models (for each cluster)
can be combined (locally) by a weighted sum.

– Regularity/Periodicity: Several functions in the BBOB set have some
form of regular, symmetric, or periodic behavior. One classical example is
the Rastrigin function (e.g., BBOB 3, 4 and 15). While our models seemed to
work well for these functions, their regularity, symmetry or periodicity is not
reproduced. With the given models, this would require a much larger number
of training samples. If such behavior is important (and known a priori), a
solution may be to choose a new kernel that, e.g., is itself periodic. This

12 M. Zaefferer and F. Rehbach

requires that the respective spectral measure of the new kernel is known, to
enable the spectral simulation method [4].

– Extremely fine-grained local structure: Some functions, such as Schaf-
fer’s F7 (BBOB function 17, 18), have an extremely fine-grained local struc-
ture. This structure will quickly go beyond even a good model’s ability to
reproduce accurately. This will be true, even for fairly low-dimensional cases.
While there is no easy way out, our results at least suggest one compensa-
tion: Many optimization algorithms will not notice such kind of fine-grained
ruggedness. For instance, a mutation operator might easily jump across these
local bumps, and rather follow the global structure of the function. Hence,
an accurate representation of such structures may not be that important in
practice, depending on the tested algorithms.

– Number of samples: The number of training data samples is one main
driver of the complexity for GPR, affecting computational time and memory
requirements. The mentioned cluster-GPR approach is one remedy [21].

6 Conclusion

Our first research question was:
Q1 How can simulation with GPR models be used to generate benchmarks for

continuous optimization?
As an answer, we use the spectral method for GPR simulation [4]. As this
method results in a superposition of cosine functions, it is well suited for con-
tinuous search spaces. Conversely, the previously used [23] decomposition-based
approach is infeasible due to computational issues. Consecutively, we asked:
Q2 Do simulation-based benchmarks provide better results than estimation-

based benchmarks, for continuous optimization?
Our experiments provide evidence that simulation-based benchmarks perform
considerably better than estimation-based benchmarks. Only for low-dimen-
sional (n ≤ 5), unimodal problems did we observe an advantage for estimation.
In practice, if the modality (and dimensionality) of the objective function is
known, this may help to select the appropriate approach. In a black-box case,
the simulation approach seems to be the more promising choice.

For future research, it would be interesting to investigate how well these re-
sults translate to non-stationary GPR models, as discussed in section 5. We also
plan to investigate how parameters of the training data generation process af-
fect the generated test functions, perform tests with broader algorithm sets, and
demonstrate the approach with real-world applications. Finally, investigating
other model types is of importance. Approaches with weaker assumptions than
GPR, such as Generative Adversarial Networks [10], may be of special interest.

References

1. D. Ardia, K. M. Mullen, B. G. Peterson, and J. Ulrich. DEoptim: Differential
evolution in R. https://CRAN.R-project.org/package=DEoptim, 2020. Version
2.2-5, Accessed: 2020-02-25.

Continuous Optimization Benchmarks by Simulation 13

2. T. Bartz-Beielstein. How to create generalizable results. In J. Kacprzyk and
W. Pedrycz, editors, Springer Handbook of Computational Intelligence, pages 1127–
1142. Springer, Berlin, 2015.

3. T. Bartz-Beielstein, J. Stork, M. Zaefferer, C. Lasarczyk, M. Rebolledo, J. Ziegen-
hirt, W. Konen, O. Flasch, P. Koch, M. Friese, L. Gentile, and F. Rehbach. SPOT
- Sequential Parameter Optimization Toolbox - v20200429. https://github.com/
bartzbeielstein/SPOT/releases/tag/v20200429, 2020. Accessed: 2020-04-29.

4. N. A. Cressie. Statistics for Spatial Data. Wiley, New York, NY, 1993.
5. N. Dang, L. Pérez Cáceres, P. De Causmaecker, and T. Stützle. Configuring irace

using surrogate configuration benchmarks. In Genetic and Evolutionary Computa-
tion Conference (GECCO’17), pages 243–250, Berlin, Germany, July 2017. ACM.

6. S. J. Daniels, A. A. M. Rahat, R. M. Everson, G. R. Tabor, and J. E. Fieldsend.
A suite of computationally expensive shape optimisation problems using compu-
tational fluid dynamics. In A. Auger, C. M. Fonseca, N. Lourenço, P. Machado,
L. Paquete, and D. Whitley, editors, Parallel Problem Solving from Nature – PPSN
XV, pages 296–307. Springer International Publishing, Coimbra, Portugal, 2018.

7. A. Fischbach, M. Zaefferer, J. Stork, M. Friese, and T. Bartz-Beielstein. From real
world data to test functions. In 26. Workshop Computational Intelligence, pages
159–177, Dortmund, Germany, Nov. 2016. KIT Scientific Publishing.

8. O. Flasch. A modular genetic programming system. PhD thesis, Technische Uni-
versität Dortmund, Dortmund, Germany, May 2015.

9. A. Forrester, A. Sobester, and A. Keane. Engineering Design via Surrogate Mod-
elling. Wiley, New York, NY, 2008.

10. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Proceedings of the
27th International Conference on Neural Information Processing Systems - Volume
2, NIPS’14, page 2672–2680, Cambridge, MA, USA, 2014. MIT Press.

11. N. Hansen, A. Auger, O. Mersmann, T. Tusar, and D. Brockhoff. COCO: A
platform for comparing continuous optimizers in a black-box setting. ArXiv e-
prints, Aug. 2016. ArXiv ID: 1603.08785v3.

12. N. Hansen, D. Brockhoff, O. Mersmann, T. Tusar, D. Tusar, O. A. ElHara, P. R.
Sampaio, A. Atamna, K. Varelas, U. Batu, D. M. Nguyen, F. Matzner, and
A. Auger. COmparing Continuous Optimizers: numbbo/COCO on Github, Mar.
2019. https://doi.org/10.5281/zenodo.2594848.

13. N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization
benchmarking 2009: Noiseless functions definitions. Research Report RR-6829,
inria-00362633, INRIA, Feb. 2009. https://hal.inria.fr/inria-00362633.

14. A. G. Journel and C. J. Huijbregts. Mining Geostatistics. Academic Press, London,
1978.

15. C. Lantuéjoul. Geostatistical Simulation: Models and Algorithms. Springer-Verlag
Berlin Heidelberg, Berlin, 2002.

16. J. A. Nelder and R. Mead. A simplex method for function minimization. The
Computer Journal, 7(4):308–313, Jan. 1965.

17. M. Preuss, G. Rudolph, and S. Wessing. Tuning optimization algorithms for real-
world problems by means of surrogate modeling. In Genetic and Evolutionary
Computation Conference (GECCO’10), pages 401–408, Portland, OR, USA, July
2010. ACM.

18. G. Rudolph, M. Preuss, and J. Quadflieg. Two-layered surrogate modeling for
tuning optimization metaheuristics. Technical Report TR09-2-005, TU Dortmund,
Dortmund, Germany, Sept. 2009. Algorithm Engineering Report.

14 M. Zaefferer and F. Rehbach

19. R. Storn and K. Price. Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11(4):341–359, 1997.

20. V. Volz, B. Naujoks, P. Kerschke, and T. Tušar. Single- and multi-objective game-
benchmark for evolutionary algorithms. In Genetic and Evolutionary Computation
Conference (GECCO’19), Prague, Czech Republic, July 2019. ACM.

21. H. Wang, B. van Stein, M. Emmerich, and T. Bäck. Time complexity reduction
in efficient global optimization using cluster Kriging. In Genetic and Evolution-
ary Computation Conference (GECCO’17), pages 889–896, Berlin, Germany, July
2017. ACM.

22. J. Ypma, H. W. Borchers, and D. Eddelbuettel. nloptr vers-1.2.1: R interface to
nlopt. http://cran.r-project.org/package=nloptr, 2019. Accessed: 2019-11-20.

23. M. Zaefferer, A. Fischbach, B. Naujoks, and T. Bartz-Beielstein. Simulation-based
test functions for optimization algorithms. In Genetic and Evolutionary Computa-
tion Conference (GECCO’17), pages 905–912, Berlin, Germany, July 2017. ACM.

Kontakt/Impressum

Diese Veröffentlichungen erscheinen im Rahmen der Schriftenreihe "CIplus". Alle Veröf-
fentlichungen dieser Reihe können unter
https://cos.bibl.th-koeln.de/home

abgerufen werden.

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.
Datum der Veröffentlichung: 02.09.2020

Herausgeber / Editorship

Prof. Dr. Thomas Bartz-Beielstein,
Prof. Dr. Wolfgang Konen,
Prof. Dr. Boris Naujoks,
Institute for Data Science, Engineering, and Analytics,
Institute of Computer Science,
Faculty of Computer Science and Engineering Science,
TH Köln,
Steinmüllerallee 1,
51643 Gummersbach
url: www.ciplus-research.de

Schriftleitung und Ansprechpartner/ Contact editor’s office

Prof. Dr. Thomas Bartz-Beielstein,
Institute for Data Science, Engineering, and Analytics,
Faculty of Computer Science and Engineering Science,
TH Köln,
Steinmüllerallee 1, 51643 Gummersbach
phone: +49 2261 8196 6391
url: http://www.spotseven.de
eMail: thomas.bartz-beielstein@th-koeln.de

ISSN (online) 2194-2870

https://cos.bibl.th-koeln.de/home
www.ciplus-research.de
http://www.spotseven.de

