Volltext-Downloads (blau) und Frontdoor-Views (grau)

Variable Reduction for Surrogate-Based Optimization

  • Real-world problems such as computational fluid dynamics simulations and finite element analyses are computationally expensive. A standard approach to mitigating the high computational expense is Surrogate-Based Optimization (SBO). Yet, due to the high-dimensionality of many simulation problems, SBO is not directly applicable or not efficient. Reducing the dimensionality of the search space is one method to overcome this limitation. In addition to the applicability of SBO, dimensionality reduction enables easier data handling and improved data and model interpretability. Regularization is considered as one state-of-the-art technique for dimensionality reduction. We propose a hybridization approach called Regularized-Surrogate-Optimization (RSO) aimed at overcoming difficulties related to high-dimensionality. It couples standard Kriging-based SBO with regularization techniques. The employed regularization methods are based on three adaptations of the least absolute shrinkage and selection operator (LASSO). In addition, tree-based methods are analyzed as an alternative variable selection method. An extensive study is performed on a set of artificial test functions and two real-world applications: the electrostatic precipitator problem and a multilayered composite design problem. Experiments reveal that RSO requires significantly less time than standard SBO to obtain comparable results. The pros and cons of the RSO approach are discussed, and recommendations for practitioners are presented.

Export metadata

Additional Services

Share in Twitter Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Frederik Rehbach, Lorenzo Gentile, Thomas Bartz-Beielstein
URN:urn:nbn:de:hbz:832-cos4-9068
Series (Serial Number):CIplus (5/2020)
Document Type:Conference Proceeding
Language:English
Release Date:2020/07/22
Tag:Optimization; Surrogate-based; Variable reduction
Institutes and Central Facilities:Fakultät für Informatik und Ingenieurwissenschaften (F10)
Dewey Decimal Classification:000 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Open Access:Open Access
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International