### Refine

#### Year of publication

#### Document Type

- Report (21)
- Working Paper (12)
- Article (6)
- Preprint (6)
- Conference Proceeding (1)

#### Keywords

- Optimierung (17)
- Optimization (12)
- Soft Computing (9)
- Modellierung (7)
- Evolutionärer Algorithmus (5)
- Globale Optimierung (5)
- Simulation (5)
- Benchmarking (4)
- Metaheuristik (4)
- Computational Intelligence (3)
- Genetisches Programmieren (3)
- Kriging (3)
- Mehrkriterielle Optimierung (3)
- Modeling (3)
- Sequential Parameter Optimization (3)
- Sequentielle Parameter Optimierung (3)
- Surrogate (3)
- Surrogate Models (3)
- Versuchsplanung (3)
- 3D Printing (2)
- Bayesian Optimization (2)
- Co-Kriging (2)
- Combined simulation (2)
- Design of Experiments (2)
- Ensemble Methods (2)
- Event Detection (2)
- Evolutionary Computation (2)
- Evolutionsstrategie (2)
- Genetic Programming (2)
- Genetische Algorithmen (2)
- Imputation (2)
- Machine Learning (2)
- Maschinelles Lernen (2)
- Metamodel (2)
- Multi-Criteria Optimization (2)
- Multiobjective Optimization (2)
- Optimierungsproblem (2)
- Parallelization (2)
- Prognose (2)
- R (2)
- Surrogat-Modellierung (2)
- Surrogate Modeling (2)
- Surrogate-based (2)
- Taxonomie (2)
- Taxonomy (2)
- 3D-Druck (1)
- Algorithm Tuning (1)
- Algorithmus (1)
- Angewandte Mathematik (1)
- Artificial intelligence (1)
- Automated Learning (1)
- BBOB (1)
- Bayesian Learning (1)
- Bayesian Regression (1)
- Big Data (1)
- Big data platform (1)
- Biogas (1)
- Biogas Plant (1)
- Ccomputational fluid dynamics (1)
- Cognition (1)
- Computational fluid dynamics (1)
- Conditional inference tree (1)
- Cyclone Dust Separator (1)
- Data Analysis (1)
- Data Mining (1)
- Data Modelling (1)
- Datenanalyse (1)
- Decision tree (1)
- Discrete Optimization (1)
- Electrostatic Precipitator (1)
- Ensemble based modeling (1)
- Entdeckendes Lernen (1)
- Entstauber (1)
- Erfahrungsbericht (1)
- Evolution Strategies (1)
- Evolutionary Algorithms (1)
- Evolutionary Robotics (1)
- Evolutionsstrategien (1)
- Evolutionäre Algorithmen (1)
- Expected Improvement (1)
- Expensive Optimization (1)
- Experiment (1)
- Experimental Algorithmics (1)
- Faserverbundwerkstoffe (1)
- Feature selection (1)
- Fehlende Daten (1)
- Finanzwirtschaft (1)
- Flowcurve (1)
- Flushing (1)
- Forschendes Lernen (1)
- Function Approximation (1)
- Funktionstest (1)
- Gaussian Process (1)
- Genetic Algorithms (1)
- Genetic programming (1)
- Health condition monitoring (1)
- Heuristics (1)
- Hot rolling (1)
- Industrie 4.0 (1)
- Industry 4.0 (1)
- Knowledge extraction (1)
- Kognition (1)
- Künstliche Intelligenz (1)
- Lineare Regression (1)
- Machine learning (1)
- Massive Online Analysis (1)
- Meta-model (1)
- Metaheuristics (1)
- Metal (1)
- Metamodell (1)
- Metamodels (1)
- Missing Data (1)
- Mixed Models (1)
- Mixed-Effects Models (1)
- Model Selection (1)
- Modelierung (1)
- Multi-criteria Optimization (1)
- Multi-fidelity (1)
- Neural Networks (1)
- Neural and Evolutionary Computing (1)
- Numerische Strömungssimulation (1)
- On-line Algorithm (1)
- Parallelisierung (1)
- Parameter Tuning (1)
- Parametertuning (1)
- Performance (1)
- Predictive Analytics (1)
- Promotion (1)
- Regression (1)
- Robotics (1)
- SPOT (1)
- Sensor placement (1)
- Sensortechnik (1)
- Signalanalyse (1)
- Simulated annealing (1)
- Simulation-based Optimization (1)
- Simulationsmodell (1)
- Social Learning (1)
- Spülen (1)
- Stacked Generalization (1)
- Stacking (1)
- Statistics (1)
- Statistische Versuchsplanung (1)
- Structural Health Monitoring (1)
- Surrogate Mod (1)
- Surrogate Model (1)
- Surrogate Optimization (1)
- Surrogate model (1)
- Surrogate model based optimization (1)
- Surrogate-Model-Based Optimization (1)
- Surrogate-model-based Optimization (1)
- Surrogates (1)
- Surrogatmodellbasierte Optimierung (1)
- Test Function (1)
- Test function generator (1)
- Time Series (1)
- Time-series (1)
- Trinkwasser (1)
- Trinkwasserversorgung (1)
- Univariate Data (1)
- Unsicherheit (1)
- Variable reduction (1)
- Varianzanalyse (1)
- Verunreinigung (1)
- Vorverarbeitung (1)
- Wasserverteilung (1)
- Wasserwirtschaft (1)
- Water Distribution Systems (1)
- Water Quality Monitoring (1)
- Water distribution systems (1)
- Zeitreihe (1)
- Zeitreihenanalyse (1)
- Zylon Enstauber (1)

Multi-criteria optimization has gained increasing attention during the last decades. This article exemplifies multi-criteria features, which are implemented in the statistical software package SPOT. It describes related software packages such as mco and emoa and gives a comprehensive introduction to simple multi criteria optimization tasks. Several hands-on examples are used for illustration. The article is well-suited as a starting point for performing multi-criteria optimization tasks with SPOT.

An essential task for operation and planning of biogas plants is the optimization of substrate feed mixtures. Optimizing the monetary gain requires the determination of the exact amounts of maize, manure, grass silage, and other substrates. Accurate simulation models are mandatory for this optimization, because the underlying chemical processes are very slow. The simulation models themselves may be time-consuming to evaluate, hence we show how to use surrogate-model-based approaches to optimize biogas plants efficiently. In detail, a Kriging surrogate is employed. To improve model quality of this surrogate, we integrate cheaply available data into the optimization process. Doing so, Multi-fidelity modeling methods like Co-Kriging are employed. Furthermore, a two-layered modeling approach is employed to avoid deterioration of model quality due to discontinuities in the search space. At the same time, the cheaply available data is shown to be very useful for initialization of the employed optimization algorithms. Overall, we show how biogas plants can be efficiently modeled using data-driven methods, avoiding discontinuities as well as including cheaply available data. The application of the derived surrogate models to an optimization process is shown to be very difficult, yet successful for a lower problem dimension.

When designing or developing optimization algorithms, test functions are crucial to evaluate
performance. Often, test functions are not sufficiently difficult, diverse, flexible or relevant to real-world
applications. Previously,
test functions with real-world relevance were generated by training a machine learning model based on
real-world data. The model estimation is used as a test function.
We propose a more principled approach using simulation instead of estimation.
Thus, relevant and varied test functions
are created which represent the behavior of real-world fitness landscapes.
Importantly, estimation can lead to excessively smooth test functions
while simulation may avoid this pitfall. Moreover, the simulation
can be conditioned by the data, so that the simulation reproduces the training data
but features diverse behavior in unobserved regions of the search space.
The proposed test function generator is illustrated with an intuitive, one-dimensional
example. To demonstrate the utility of this approach it
is applied to a protein sequence optimization problem.
This application demonstrates the advantages as well as practical limits of simulation-based
test functions.

Formerly, multi-criteria optimization algorithms were often tested using tens of thousands function evaluations. In many real-world settings function evaluations are very costly or the available budget is very limited. Several methods were developed to solve these cost-extensive multi-criteria optimization problems by reducing the number of function evaluations by means of surrogate optimization. In this study, we apply different multi-criteria surrogate optimization methods to improve (tune) an event-detection software for water-quality monitoring. For tuning two important parameters of this software, four state-of-the-art methods are compared: S-Metric-Selection Efficient Global Optimization (SMS-EGO), S-Metric-Expected Improvement for Efficient Global Optimization SExI-EGO, Euclidean Distance based Expected Improvement Euclid-EI (here referred to as MEI-SPOT due to its implementation in the Sequential Parameter Optimization Toolbox SPOT) and a multi-criteria approach based on SPO (MSPOT). Analyzing the performance of the different methods provides insight into the working-mechanisms of cutting-edge multi-criteria solvers. As one of the approaches, namely MSPOT, does not consider the prediction variance of the surrogate model, it is of interest whether this can lead to premature convergence on the practical tuning problem. Furthermore, all four approaches will be compared to a simple SMS-EMOA to validate that the use of surrogate models is justified on this problem.

Surrogate-assisted optimization has proven to be very successful if applied to industrial problems. The use of a data-driven surrogate model of an objective function during an optimization cycle has many bene ts, such as being cheap to evaluate and further providing both information about the objective landscape and the parameter space. In preliminary work, it was researched how surrogate-assisted optimization can help to optimize the structure of a neural network (NN) controller. In this work, we will focus on how surrogates can help to improve the direct learning process of a transparent feed-forward neural network controller. As an initial case study we will consider a manageable real-world control task: the elevator supervisory group problem (ESGC) using a simplified simulation model. We use this model as a benchmark which should indicate the applicability and performance of surrogate-assisted optimization to this kind of tasks. While the optimization process itself is in this case not onsidered expensive, the results show that surrogate-assisted optimization is capable of outperforming metaheuristic optimization methods for a low number of evaluations. Further the surrogate can be used for signi cance analysis of the inputs and weighted connections to further exploit problem information.

Surrogate-based optimization and nature-inspired metaheuristics have become the state of the art in solving real-world optimization problems. Still, it is difficult for beginners and even experts to get an overview that explains their advantages in comparison to the large number of available methods in the scope of continuous optimization. Available taxonomies lack the integration of surrogate-based approaches and thus their embedding in the larger context of this broad field.
This article presents a taxonomy of the field, which further matches the idea of nature-inspired algorithms, as it is based on the human behavior in path finding. Intuitive analogies make it easy to conceive the most basic principles of the search algorithms, even for beginners and non-experts in this area of research. However, this scheme does not oversimplify the high complexity of the different algorithms, as the class identifier only defines a descriptive meta-level of the algorithm search strategies. The taxonomy was established by exploring and matching algorithm schemes, extracting similarities and differences, and creating a set of classification indicators to distinguish between five distinct classes. In practice, this taxonomy allows recommendations for the applicability of the corresponding algorithms and helps developers trying to create or improve their own algorithms.

As the amount of data gathered by monitoring systems increases, using computational tools to analyze it becomes a necessity.
Machine learning algorithms can be used in both regression and classification problems, providing useful insights while avoiding the bias and proneness to errors of humans. In this paper, a specific kind of decision tree algorithm, called conditional inference tree, is used to extract relevant knowledge from data that pertains to electrical motors. The model is chosen due to its flexibility, strong statistical foundation, as well as great capabilities to generalize and cope with problems in the data. The obtained knowledge is organized in a structured way and then analyzed in the context of health condition monitoring. The final
results illustrate how the approach can be used to gain insight into the system and present the results in an understandable, user-friendly manner

The availability of several CPU cores on current computers enables
parallelization and increases the computational power significantly.
Optimization algorithms have to be adapted to exploit these highly
parallelized systems and evaluate multiple candidate solutions in
each iteration. This issue is especially challenging for expensive
optimization problems, where surrogate models are employed to
reduce the load of objective function evaluations.
This paper compares different approaches for surrogate modelbased
optimization in parallel environments. Additionally, an easy
to use method, which was developed for an industrial project, is
proposed. All described algorithms are tested with a variety of
standard benchmark functions. Furthermore, they are applied to
a real-world engineering problem, the electrostatic precipitator
problem. Expensive computational fluid dynamics simulations are
required to estimate the performance of the precipitator. The task
is to optimize a gas-distribution system so that a desired velocity
distribution is achieved for the gas flow throughout the precipitator.
The vast amount of possible configurations leads to a complex
discrete valued optimization problem. The experiments indicate
that a hybrid approach works best, which proposes candidate solutions
based on different surrogate model-based infill criteria and
evolutionary operators.

Surrogate-based optimization relies on so-called infill criteria (acquisition functions) to decide which point to evaluate next. When Kriging is used as the surrogate model of choice (also called Bayesian optimization), one of the most frequently chosen criteria is expected improvement. We argue that the popularity of expected improvement largely relies on its theoretical properties rather than empirically validated performance. Few results from the literature show evidence, that under certain conditions, expected improvement may perform worse than something as simple as the predicted value of the surrogate model. We benchmark both infill criteria in an extensive empirical study on the ‘BBOB’ function set. This investigation includes a detailed study of the impact of problem dimensionality on algorithm performance. The results support the hypothesis that exploration loses importance with increasing problem dimensionality. A statistical analysis reveals that the purely exploitative search with the predicted value criterion performs better on most problems of five or higher dimensions. Possible reasons for these results are discussed. In addition, we give an in-depth guide for choosing the infill criteria based on prior knowledge about the problem at hand, its dimensionality, and the available budget.