### Refine

#### Document Type

- Working Paper (9)
- Report (6)
- Preprint (3)

#### Language

- English (18) (remove)

#### Keywords

- Optimization (5)
- Modeling (3)
- 3D Printing (2)
- Combined simulation (2)
- Evolutionary Computation (2)
- Globale Optimierung (2)
- Maschinelles Lernen (2)
- Optimierung (2)
- Surrogate (2)
- Surrogate Models (2)
- 3D-Druck (1)
- Algorithm Tuning (1)
- Algorithmus (1)
- Automated Learning (1)
- Automation (1)
- Bayesian Learning (1)
- Bayesian Regression (1)
- Benchmarking (1)
- Business Intelligence (1)
- Ccomputational fluid dynamics (1)
- Computational fluid dynamics (1)
- Conditional inference tree (1)
- Data Analysis (1)
- Data Mining (1)
- Data Modelling (1)
- Data-Warehouse-Konzept (1)
- Decision tree (1)
- Discrete Optimization (1)
- Electrostatic Precipitator (1)
- Ensemble Methods (1)
- Ensemble based modeling (1)
- Evolutionärer Algorithmus (1)
- Expensive Optimization (1)
- Experiment (1)
- Experimental Algorithmics (1)
- Flowcurve (1)
- Function Approximation (1)
- Funktionstest (1)
- Gaussian Process (1)
- Health condition monitoring (1)
- Hot rolling (1)
- Imputation (1)
- Knowledge extraction (1)
- Kriging (1)
- Lineare Regression (1)
- Machine Learning (1)
- Machine learning (1)
- Massive Online Analysis (1)
- Meta-model (1)
- Metaheuristics (1)
- Metaheuristik (1)
- Metal (1)
- Metamodel (1)
- Metamodell (1)
- Metamodels (1)
- Model Selection (1)
- Modelierung (1)
- Numerische Strömungssimulation (1)
- On-line Algorithm (1)
- Parallelization (1)
- R (1)
- Referenzmodell (1)
- Regression (1)
- SAP (1)
- SPOT (1)
- Sensortechnik (1)
- Sequential Parameter Optimization (1)
- Simulation (1)
- Simulation-based Optimization (1)
- Soft Computing (1)
- Stacked Generalization (1)
- Stacking (1)
- Standardisierung (1)
- Surrogate Mod (1)
- Surrogate Model (1)
- Surrogates (1)
- Taxonomie (1)
- Taxonomy (1)
- Test Function (1)
- Test function generator (1)
- Time Series (1)
- Univariate Data (1)

#### Institute

- Fakultät für Informatik und Ingenieurwissenschaften (F10) (18) (remove)

When designing or developing optimization algorithms, test functions are crucial to evaluate
performance. Often, test functions are not sufficiently difficult, diverse, flexible or relevant to real-world
applications. Previously,
test functions with real-world relevance were generated by training a machine learning model based on
real-world data. The model estimation is used as a test function.
We propose a more principled approach using simulation instead of estimation.
Thus, relevant and varied test functions
are created which represent the behavior of real-world fitness landscapes.
Importantly, estimation can lead to excessively smooth test functions
while simulation may avoid this pitfall. Moreover, the simulation
can be conditioned by the data, so that the simulation reproduces the training data
but features diverse behavior in unobserved regions of the search space.
The proposed test function generator is illustrated with an intuitive, one-dimensional
example. To demonstrate the utility of this approach it
is applied to a protein sequence optimization problem.
This application demonstrates the advantages as well as practical limits of simulation-based
test functions.

Surrogate-assisted optimization has proven to be very successful if applied to industrial problems. The use of a data-driven surrogate model of an objective function during an optimization cycle has many bene ts, such as being cheap to evaluate and further providing both information about the objective landscape and the parameter space. In preliminary work, it was researched how surrogate-assisted optimization can help to optimize the structure of a neural network (NN) controller. In this work, we will focus on how surrogates can help to improve the direct learning process of a transparent feed-forward neural network controller. As an initial case study we will consider a manageable real-world control task: the elevator supervisory group problem (ESGC) using a simplified simulation model. We use this model as a benchmark which should indicate the applicability and performance of surrogate-assisted optimization to this kind of tasks. While the optimization process itself is in this case not onsidered expensive, the results show that surrogate-assisted optimization is capable of outperforming metaheuristic optimization methods for a low number of evaluations. Further the surrogate can be used for signi cance analysis of the inputs and weighted connections to further exploit problem information.

Surrogate-based optimization and nature-inspired metaheuristics have become the state of the art in solving real-world optimization problems. Still, it is difficult for beginners and even experts to get an overview that explains their advantages in comparison to the large number of available methods in the scope of continuous optimization. Available taxonomies lack the integration of surrogate-based approaches and thus their embedding in the larger context of this broad field.
This article presents a taxonomy of the field, which further matches the idea of nature-inspired algorithms, as it is based on the human behavior in path finding. Intuitive analogies make it easy to conceive the most basic principles of the search algorithms, even for beginners and non-experts in this area of research. However, this scheme does not oversimplify the high complexity of the different algorithms, as the class identifier only defines a descriptive meta-level of the algorithm search strategies. The taxonomy was established by exploring and matching algorithm schemes, extracting similarities and differences, and creating a set of classification indicators to distinguish between five distinct classes. In practice, this taxonomy allows recommendations for the applicability of the corresponding algorithms and helps developers trying to create or improve their own algorithms.

As the amount of data gathered by monitoring systems increases, using computational tools to analyze it becomes a necessity.
Machine learning algorithms can be used in both regression and classification problems, providing useful insights while avoiding the bias and proneness to errors of humans. In this paper, a specific kind of decision tree algorithm, called conditional inference tree, is used to extract relevant knowledge from data that pertains to electrical motors. The model is chosen due to its flexibility, strong statistical foundation, as well as great capabilities to generalize and cope with problems in the data. The obtained knowledge is organized in a structured way and then analyzed in the context of health condition monitoring. The final
results illustrate how the approach can be used to gain insight into the system and present the results in an understandable, user-friendly manner

The availability of several CPU cores on current computers enables
parallelization and increases the computational power significantly.
Optimization algorithms have to be adapted to exploit these highly
parallelized systems and evaluate multiple candidate solutions in
each iteration. This issue is especially challenging for expensive
optimization problems, where surrogate models are employed to
reduce the load of objective function evaluations.
This paper compares different approaches for surrogate modelbased
optimization in parallel environments. Additionally, an easy
to use method, which was developed for an industrial project, is
proposed. All described algorithms are tested with a variety of
standard benchmark functions. Furthermore, they are applied to
a real-world engineering problem, the electrostatic precipitator
problem. Expensive computational fluid dynamics simulations are
required to estimate the performance of the precipitator. The task
is to optimize a gas-distribution system so that a desired velocity
distribution is achieved for the gas flow throughout the precipitator.
The vast amount of possible configurations leads to a complex
discrete valued optimization problem. The experiments indicate
that a hybrid approach works best, which proposes candidate solutions
based on different surrogate model-based infill criteria and
evolutionary operators.

Modelling Zero-inflated Rainfall Data through the Use of Gaussian Process and Bayesian Regression
(2018)

Rainfall is a key parameter for understanding the water cycle. An accurate rainfall measurement is vital in the development of hydrological models. By means of indirect measurement, satellites can nowadays estimate the rainfall around the world. However, these measurements are not always accurate. As a first approach to generate a bias-corrected rainfall estimate using satellite data, the performance of Gaussian process and Bayesian regression is studied. The results show Gaussian process as the better option for this dataset but leave place to improvements on both modelling strategies.

In this paper we present a comparison of different data driven modeling methods. The first instance of a data driven linear Bayesian model is compared with several linear regression models, a Kriging model and a genetic programming model.
The models are build on industrial data for the development of a robust gas sensor.
The data contain limited amount of samples and a high variance.
The mean square error of the models implemented in a test dataset is used as the comparison strategy.
The results indicate that standard linear regression approaches as well as Kriging and GP show good results,
whereas the Bayesian approach, despite the fact that it requires additional resources, does not lead to improved results.

Architecural aproaches are considered to simplify the generation of re-usable building blocks in the field of data warehousing. While SAP’s Layer Scalable Architecure (LSA) offers a reference model for creating data warehousing infrastructure based on SAP software, extented reference models are needed to guide the integration of SAP and non-SAP tools. Therefore, SAP’s LSA is compared to the Data Warehouse Architectural Reference Model (DWARM), which aims to cover the classical data warehouse topologies.

To maximize the throughput of a hot rolling mill,
the number of passes has to be reduced. This can be achieved by maximizing the thickness reduction in each pass. For this purpose, exact predictions of roll force and torque are required. Hence, the predictive models that describe the physical behavior of the product have to be accurate and cover a wide range of different materials.
Due to market requirements a lot of new materials are tested and rolled. If these materials are chosen to be rolled more often, a suitable flow curve has to be established. It is not reasonable to determine those flow curves in laboratory, because of costs and time. A strong demand for quick parameter determination and the optimization of flow curve parameter with minimum costs is the logical consequence. Therefore parameter estimation and the optimization with real data, which were collected during previous runs, is a promising idea. Producers benefit from this data-driven approach and receive a huge gain in flexibility when rolling new
materials, optimizing current production, and increasing quality. This concept would also allow to optimize flow curve parameters, which have already been treated by standard methods. In this article, a new data-driven approach for predicting the physical behavior of the product and setting important parameters is presented.
We demonstrate how the prediction quality of the roll force and roll torque can be optimized sustainably. This offers the opportunity to continuously increase the workload in each pass to the theoretical maximum while product quality and process stability can also be improved.

When using machine learning techniques for learning a function approximation from given data it is often a difficult task to select the right modeling technique.
In many real-world settings is no preliminary knowledge about the objective function available. Then it might be beneficial if the algorithm could learn all models by itself and select the model that suits best to the problem.
This approach is known as automated model selection. In this work we propose a
generalization of this approach.
It combines the predictions of several into one more accurate ensemble surrogate model. This approach is studied in a fundamental way, by first evaluating minimalistic ensembles of only two surrogate models in detail and then proceeding to ensembles with three and more surrogate models.
The results show to what extent combinations of models can perform better than single surrogate models and provides insights into the scalability and robustness of the approach. The study focuses on multi-modal functions topologies, which are important in surrogate-assisted global optimization.