### Refine

#### Document Type

- Working Paper (7)
- Preprint (2)
- Article (1)
- Report (1)

#### Keywords

- Optimization (5)
- Modeling (3)
- 3D Printing (2)
- Combined simulation (2)
- 3D-Druck (1)
- Algorithm Tuning (1)
- Benchmarking (1)
- Ccomputational fluid dynamics (1)
- Computational fluid dynamics (1)
- Discrete Optimization (1)
- Electrostatic Precipitator (1)
- Evolutionary Computation (1)
- Expensive Optimization (1)
- Flowcurve (1)
- Funktionstest (1)
- Hot rolling (1)
- Imputation (1)
- Kriging (1)
- Meta-model (1)
- Metal (1)
- Metamodel (1)
- Metamodels (1)
- Modelierung (1)
- Numerische Strömungssimulation (1)
- Optimierung (1)
- Parallelization (1)
- R (1)
- SPOT (1)
- Simulation (1)
- Simulation-based Optimization (1)
- Stacking (1)
- Surrogate (1)
- Surrogate Mod (1)
- Surrogate Models (1)
- Surrogate-based (1)
- Surrogates (1)
- Test Function (1)
- Test function generator (1)
- Time Series (1)
- Univariate Data (1)

#### Institute

- Fakultät für Informatik und Ingenieurwissenschaften (F10) (11) (remove)

The availability of several CPU cores on current computers enables
parallelization and increases the computational power significantly.
Optimization algorithms have to be adapted to exploit these highly
parallelized systems and evaluate multiple candidate solutions in
each iteration. This issue is especially challenging for expensive
optimization problems, where surrogate models are employed to
reduce the load of objective function evaluations.
This paper compares different approaches for surrogate modelbased
optimization in parallel environments. Additionally, an easy
to use method, which was developed for an industrial project, is
proposed. All described algorithms are tested with a variety of
standard benchmark functions. Furthermore, they are applied to
a real-world engineering problem, the electrostatic precipitator
problem. Expensive computational fluid dynamics simulations are
required to estimate the performance of the precipitator. The task
is to optimize a gas-distribution system so that a desired velocity
distribution is achieved for the gas flow throughout the precipitator.
The vast amount of possible configurations leads to a complex
discrete valued optimization problem. The experiments indicate
that a hybrid approach works best, which proposes candidate solutions
based on different surrogate model-based infill criteria and
evolutionary operators.

Data pre-processing is a key research topic in data mining because it plays a
crucial role in improving the accuracy of any data mining algorithm. In most
real world cases, a significant amount of the recorded data is found missing
due to most diverse errors. This loss of data is nearly always unavoidable.
Recovery of missing data plays a vital role in avoiding inaccurate data
mining decisions. Most multivariate imputation methods are not compatible
to univariate datasets and the traditional univariate imputation techniques
become highly biased as the missing data gap increases. With the current
technological advancements abundant data is being captured every second.
Hence, we intend to develop a new algorithm that enables maximum
utilization of the available big datasets for imputation. In this paper, we
present a Seasonal and Trend decomposition using Loess (STL) based
Seasonal Moving Window Algorithm, which is capable of handling patterns
with trend as well as cyclic characteristics. We show that the algorithm is
highly suitable for pre-processing of large datasets.

Surrogate-based optimization relies on so-called infill criteria (acquisition functions) to decide which point to evaluate next. When Kriging is used as the surrogate model of choice (also called Bayesian optimization), one of the most frequently chosen criteria is expected improvement. We argue that the popularity of expected improvement largely relies on its theoretical properties rather than empirically validated performance. Few results from the literature show evidence, that under certain conditions, expected improvement may perform worse than something as simple as the predicted value of the surrogate model. We benchmark both infill criteria in an extensive empirical study on the ‘BBOB’ function set. This investigation includes a detailed study of the impact of problem dimensionality on algorithm performance. The results support the hypothesis that exploration loses importance with increasing problem dimensionality. A statistical analysis reveals that the purely exploitative search with the predicted value criterion performs better on most problems of five or higher dimensions. Possible reasons for these results are discussed. In addition, we give an in-depth guide for choosing the infill criteria based on prior knowledge about the problem at hand, its dimensionality, and the available budget.

When researchers and practitioners in the field of
computational intelligence are confronted with real-world
problems, the question arises which method is the best to
apply. Nowadays, there are several, well established test
suites and well known artificial benchmark functions
available.
However, relevance and applicability of these methods to
real-world problems remains an open question in many
situations. Furthermore, the generalizability of these
methods cannot be taken for granted.
This paper describes a data-driven approach for the
generation of test instances, which is based on
real-world data. The test instance generation uses
data-preprocessing, feature extraction, modeling, and
parameterization. We apply this methodology on a classical
design of experiment real-world project and generate test
instances for benchmarking, e.g. design methods, surrogate
techniques, and optimization algorithms. While most
available results of methods applied on real-world
problems lack availability of the data for comparison,
our future goal is to create a toolbox covering multiple
data sets of real-world projects to provide a test
function generator to the research community.

The performance of optimization algorithms relies crucially on their parameterizations. Finding good parameter settings is called algorithm tuning. Using
a simple simulated annealing algorithm, we will demonstrate how optimization algorithms can be tuned using the Sequential Parameter Optimization Toolbox (SPOT). SPOT provides several tools for automated and interactive tuning. The underlying concepts of the SPOT approach are explained. This includes key techniques such as exploratory fitness landscape analysis and response surface methodology. Many examples illustrate
how SPOT can be used for understanding the performance of algorithms and gaining insight into algorithm behavior. Furthermore, we demonstrate how SPOT can be used as an optimizer and how a sophisticated ensemble approach is able to combine several meta models via stacking.

To maximize the throughput of a hot rolling mill,
the number of passes has to be reduced. This can be achieved by maximizing the thickness reduction in each pass. For this purpose, exact predictions of roll force and torque are required. Hence, the predictive models that describe the physical behavior of the product have to be accurate and cover a wide range of different materials.
Due to market requirements a lot of new materials are tested and rolled. If these materials are chosen to be rolled more often, a suitable flow curve has to be established. It is not reasonable to determine those flow curves in laboratory, because of costs and time. A strong demand for quick parameter determination and the optimization of flow curve parameter with minimum costs is the logical consequence. Therefore parameter estimation and the optimization with real data, which were collected during previous runs, is a promising idea. Producers benefit from this data-driven approach and receive a huge gain in flexibility when rolling new
materials, optimizing current production, and increasing quality. This concept would also allow to optimize flow curve parameters, which have already been treated by standard methods. In this article, a new data-driven approach for predicting the physical behavior of the product and setting important parameters is presented.
We demonstrate how the prediction quality of the roll force and roll torque can be optimized sustainably. This offers the opportunity to continuously increase the workload in each pass to the theoretical maximum while product quality and process stability can also be improved.

The use of surrogate models is a standard method to deal with complex, realworld
optimization problems. The first surrogate models were applied to continuous
optimization problems. In recent years, surrogate models gained importance
for discrete optimization problems. This article, which consists of three
parts, takes care of this development. The first part presents a survey of modelbased
methods, focusing on continuous optimization. It introduces a taxonomy,
which is useful as a guideline for selecting adequate model-based optimization
tools. The second part provides details for the case of discrete optimization
problems. Here, six strategies for dealing with discrete data structures are introduced.
A new approach for combining surrogate information via stacking
is proposed in the third part. The implementation of this approach will be
available in the open source R package SPOT2. The article concludes with a
discussion of recent developments and challenges in both application domains.

Cyclone separators are popular devices used to filter dust from the emitted flue gases. They are applied as pre-filters in many industrial processes including energy production and grain processing facilities.
Increasing computational power and the availability of 3D printers provide new tools for the combination of modeling and experimentation, which necessary for constructing efficient cyclones. Several simulation tools can be run in parallel, e.g., long running CFD simulations can be accompanied by experiments with 3D printers. Furthermore, results from analytical and data-driven models can be incorporated. There are fundamental differences between these modeling approaches: some models, e.g., analytical models, use domain knowledge, whereas data-driven models do not require any information about the underlying processes.
At the same time, data-driven models require input and output data, whereas analytical models do not. Combining results from models with different input-output structure is of great interest. This combination inspired the development of a new methodology. An optimization via multimodel simulation approach, which combines results from different models, is introduced.
Using cyclonic dust separators (cyclones) as a real-world simulation problem, the feasibility of this approach is demonstrated. Pros and cons of this approach are discussed and experiences from the experiments are presented.
Furthermore, technical problems, which are related to 3D-printing approaches, are discussed.

Increasing computational power and the availability of 3D printers provide new tools for the combination of modeling and experimentation. Several simulation tools can be run independently and in parallel, e.g., long running computational fluid dynamics simulations can be accompanied by experiments with 3D printers. Furthermore, results from analytical and data-driven models can be incorporated. However, there are fundamental differences between these modeling approaches: some models, e.g., analytical models, use domain knowledge, whereas data-driven models do not require any information about the underlying processes.
At the same time, data-driven models require input and output data, but analytical models do not. Combining results from models with different input-output structures might improve and accelerate the optimization process. The optimization via multimodel simulation (OMMS) approach, which is able to combine results from these different models, is introduced in this paper.
Using cyclonic dust separators as a real-world simulation problem, the feasibility of this approach is demonstrated and a proof-of-concept is presented. Cyclones are popular devices used to filter dust from the emitted flue gases. They are applied as pre-filters in many industrial processes including energy production and grain processing facilities. Pros and cons of this multimodel optimization approach are discussed and experiences from experiments are presented.

When designing or developing optimization algorithms, test functions are crucial to evaluate
performance. Often, test functions are not sufficiently difficult, diverse, flexible or relevant to real-world
applications. Previously,
test functions with real-world relevance were generated by training a machine learning model based on
real-world data. The model estimation is used as a test function.
We propose a more principled approach using simulation instead of estimation.
Thus, relevant and varied test functions
are created which represent the behavior of real-world fitness landscapes.
Importantly, estimation can lead to excessively smooth test functions
while simulation may avoid this pitfall. Moreover, the simulation
can be conditioned by the data, so that the simulation reproduces the training data
but features diverse behavior in unobserved regions of the search space.
The proposed test function generator is illustrated with an intuitive, one-dimensional
example. To demonstrate the utility of this approach it
is applied to a protein sequence optimization problem.
This application demonstrates the advantages as well as practical limits of simulation-based
test functions.