### Refine

#### Document Type

- Working Paper (3)
- Preprint (1)
- Report (1)

#### Keywords

- Optimization (5) (remove)

#### Institute

- Fakultät für Informatik und Ingenieurwissenschaften (F10) (5) (remove)

Surrogate-based optimization and nature-inspired metaheuristics have become the state of the art in solving real-world optimization problems. Still, it is difficult for beginners and even experts to get an overview that explains their advantages in comparison to the large number of available methods in the scope of continuous optimization. Available taxonomies lack the integration of surrogate-based approaches and thus their embedding in the larger context of this broad field.
This article presents a taxonomy of the field, which further matches the idea of nature-inspired algorithms, as it is based on the human behavior in path finding. Intuitive analogies make it easy to conceive the most basic principles of the search algorithms, even for beginners and non-experts in this area of research. However, this scheme does not oversimplify the high complexity of the different algorithms, as the class identifier only defines a descriptive meta-level of the algorithm search strategies. The taxonomy was established by exploring and matching algorithm schemes, extracting similarities and differences, and creating a set of classification indicators to distinguish between five distinct classes. In practice, this taxonomy allows recommendations for the applicability of the corresponding algorithms and helps developers trying to create or improve their own algorithms.

The availability of several CPU cores on current computers enables
parallelization and increases the computational power significantly.
Optimization algorithms have to be adapted to exploit these highly
parallelized systems and evaluate multiple candidate solutions in
each iteration. This issue is especially challenging for expensive
optimization problems, where surrogate models are employed to
reduce the load of objective function evaluations.
This paper compares different approaches for surrogate modelbased
optimization in parallel environments. Additionally, an easy
to use method, which was developed for an industrial project, is
proposed. All described algorithms are tested with a variety of
standard benchmark functions. Furthermore, they are applied to
a real-world engineering problem, the electrostatic precipitator
problem. Expensive computational fluid dynamics simulations are
required to estimate the performance of the precipitator. The task
is to optimize a gas-distribution system so that a desired velocity
distribution is achieved for the gas flow throughout the precipitator.
The vast amount of possible configurations leads to a complex
discrete valued optimization problem. The experiments indicate
that a hybrid approach works best, which proposes candidate solutions
based on different surrogate model-based infill criteria and
evolutionary operators.

When designing or developing optimization algorithms, test functions are crucial to evaluate
performance. Often, test functions are not sufficiently difficult, diverse, flexible or relevant to real-world
applications. Previously,
test functions with real-world relevance were generated by training a machine learning model based on
real-world data. The model estimation is used as a test function.
We propose a more principled approach using simulation instead of estimation.
Thus, relevant and varied test functions
are created which represent the behavior of real-world fitness landscapes.
Importantly, estimation can lead to excessively smooth test functions
while simulation may avoid this pitfall. Moreover, the simulation
can be conditioned by the data, so that the simulation reproduces the training data
but features diverse behavior in unobserved regions of the search space.
The proposed test function generator is illustrated with an intuitive, one-dimensional
example. To demonstrate the utility of this approach it
is applied to a protein sequence optimization problem.
This application demonstrates the advantages as well as practical limits of simulation-based
test functions.

The performance of optimization algorithms relies crucially on their parameterizations. Finding good parameter settings is called algorithm tuning. Using
a simple simulated annealing algorithm, we will demonstrate how optimization algorithms can be tuned using the Sequential Parameter Optimization Toolbox (SPOT). SPOT provides several tools for automated and interactive tuning. The underlying concepts of the SPOT approach are explained. This includes key techniques such as exploratory fitness landscape analysis and response surface methodology. Many examples illustrate
how SPOT can be used for understanding the performance of algorithms and gaining insight into algorithm behavior. Furthermore, we demonstrate how SPOT can be used as an optimizer and how a sophisticated ensemble approach is able to combine several meta models via stacking.

When researchers and practitioners in the field of
computational intelligence are confronted with real-world
problems, the question arises which method is the best to
apply. Nowadays, there are several, well established test
suites and well known artificial benchmark functions
available.
However, relevance and applicability of these methods to
real-world problems remains an open question in many
situations. Furthermore, the generalizability of these
methods cannot be taken for granted.
This paper describes a data-driven approach for the
generation of test instances, which is based on
real-world data. The test instance generation uses
data-preprocessing, feature extraction, modeling, and
parameterization. We apply this methodology on a classical
design of experiment real-world project and generate test
instances for benchmarking, e.g. design methods, surrogate
techniques, and optimization algorithms. While most
available results of methods applied on real-world
problems lack availability of the data for comparison,
our future goal is to create a toolbox covering multiple
data sets of real-world projects to provide a test
function generator to the research community.