In der vorliegenden Arbeit werden in drei Fallbeispielen aus dem Bereich der betrieblichen Altersversorgung die Versorgungszusagen mithilfe von bewerteten inhomogenen Markov-Ketten modelliert. Dabei liegt der Fokus auf den Pfaden der Markov-Ketten. Es wird anhand der Fallbeispiele gezeigt, wie man mithilfe der Pfade den Erwartungswert und die Standardabweichung der Zufallsvariablen „Barwert aller zukünftigen Zahlungen“ berechnen kann. Darüber hinaus ist es auf Basis der Pfade möglich, in Bezug auf diese Zufallsvariable auch Wahrscheinlichkeiten von speziellen Ereignissen und Risikomaße – Value at Risk und Expected Shortfall – zu berechnen.
Die Forschungsstelle finanzielles & aktuarielles Risikomanagement (FaRis) organisiert Anfang Juni und Dezember eines Jahres gemeinsam mit der Deutschen Aktuarvereinigung (DAV) gemeinsame Symposien zu relevanten aktuariellen Themen. Wegen des Weltkongresses der Aktuare vom 4. bis zum 8. Juni in Berlin wurde das üblicherweise zeitgleich stattfindende FaRis & DAV Symposium als „FaRis at ICA“ veranstaltet – im Sinne einer Zusammenfassung aller Kongressbeiträge von FaRis-Mitgliedern als Überblick für die in FaRis abgedeckten Forschungsgebiete. Die Kurzversionen dieser Beiträge sind in diesem Tagungsband zusammengestellt. Der nur alle vier Jahre stattfindende Weltkongress der Aktuare ist der bedeutsamste Kongress zu allen aktuariellen Fragestellungen. Mit etwa 2.700 nationalen und internationalen Teilnehmern war der ICA 2018 in Berlin der teilnehmerstärkste Kongress seit dem ersten Weltkongress 1895 in Brüssel.
Zahlungsströme werden vielfach mit dem Barwert, d.h. der Summe der abgezinsten Zahlungen, bewertet. Handelt es sich dabei um Zahlungen, die nicht sicher, d.h. risikobehaftet sind, so gehen neben dem Zinssatz i.d.R. auch Wahrscheinlichkeiten in die Bewertung ein. Viele der dabei verwendeten Modelle sind gedächtnislos. In der vorliegenden Arbeit wird für diese Fälle ein Modell, das auf der Theorie der Markov- Ketten basiert, eingeführt. Aus dieser Modellierung ergibt sich u.a. eine grundlegende Bewertungsformel. In drei unterschiedlichen ökonomischen Beispielen wird gezeigt, dass die Anwendung dieser Bewertungsformel zu den Standardbewertungsansätzen führt. Das primäre Ziel der Arbeit ist dabei nicht die Darstellung neuer Ergebnisse, sondern die grundlegende Aufbereitung der Thematik. Dabei soll die Ausarbeitung eine Basis für weitere Anwendungen schaffen und als Grundlagen für eine EDVtechnische Umsetzung dienen.
In der vorliegenden Arbeit wird ausgehend von einer jährlichen inhomogenen Markov-Kette eine unterjährliche bewertete inhomogene Markov-Kette konstruiert. Die Konstruktion der unterjährlichen Übergangsmatrizen basiert auf der Taylorreihe der Potenzfunktion bzw. deren Partialsummen. Dieser Ansatz ist eine Verallgemeinerung des Falls, dass die unterjährlichen Übergangsmatrizen durch Interpolation der jährlichen Übergangsmatrizen und der Einheitsmatrix definiert werden. Anschließend liegt der Fokus der Arbeit auf der Verteilung der Zufallsvariablen „Barwert des Zahlungsstroms“ bzw. auf der zugehörigen charakteristischen Funktion, einem EDV-technischen Verfahren zur Berechnung der Momente der Zufallsvariablen und dessen Anwendung in zwei Fallbeispielen.
In den Wirtschaftswissenschaften liegen die für Bewertungen benötigten Daten normalerweise als Jahreswerte vor, z.B. Zinssätze oder Sterblichkeiten in der Finanz- und Versicherungsmathematik. Darauf aufbauend lassen sich Markov-Ketten mit einem jährlichen Zeitraster konstruieren. Zu bewertende Zahlungen hingegen erfolgen meist unterjährlich. Der vorliegende Artikel beschäftigt sich mit der Frage, wie aus einer Markov-Kette mit jährlichem Zeitraster, eine Markov-Kette mit unterjährlichem Zeitraster konstruiert werden kann. Dabei stehen Markov-Ketten, deren Übergangsmatrizen als obere Dreiecks-matrizen gegeben sind, im Mittelpunkt des Interesses. Es werden zwei Ansätze und deren Anwendung dargestellt. Der erste Ansatz basiert auf der T-ten Wurzel der Übergangsmatrizen, der zweite Ansatz auf einer Linearisierung der Übergangsmatrizen.
Eine wichtige Fragestellung in den Wirtschaftswissenschaften ist die Bewertung von Zahlungsströmen mit dem Barwert. Sind diese Zahlungsströme mit Risiken behaftet, so kann der Barwert als Zufallsvariable interpretiert werden. In der vorliegenden Arbeit wird der risikobehaftete Zahlungsstrom als bewertete inhomogene Markov-Kette modelliert. Als Hauptergebnis wird eine Formel für die charakteristische Funktion bzw. die momentenerzeugende Funktion der Zufallsvariablen „Barwert“ hergeleitet. Damit ist die Verteilung der Zufallsvariablen eindeutig festgelegt. In konkreten Fallbeispielen wird gezeigt, wie man mit einer EDV-technischen Umsetzung der Formel den Erwartungswert, die Varianz und die Standardabweichung der Zufallsvariablen „Barwert“ ermitteln kann.
In der vorliegenden Arbeit wird ausgehend von einer jährlichen inhomogenen Markov-Kette durch lineare Interpolation der Übergangsmatrizen und der Einheitsmatrix sowohl eine unterjährliches als auch ein zeitstetige bewertete inhomogene Markov-Kette konstruiert. Beim unterjährlichen Modell liegt der Fokus auf der Verteilung der Zufallsvariablen „Barwert des Zahlungsstroms“ bzw. auf der zugehörigen charakteristischen Funktion und einem EDV-technischen Verfahren zur Berechnung der Momente der Zufallsvariablen. Beim zeitstetigen Modell steht neben der Konstruktion und den üblichen Ergebnissen für zeitstetige Markov-Ketten, die Verallgemeinerung des Restglieds bzw. des Invarianzsatzes im Mittelpunkt des Interesses.
Zahlungsströme werden vielfach mit dem Barwert, d.h. der Summe der abgezinsten Zahlungen, bewertet. Handelt es sich dabei um Zahlungen, die nicht sicher, d.h. risikobehaftet sind, so gehen neben dem Zinssatz i.d.R. auch Wahrscheinlichkeiten in die Bewertung ein. Sowohl der Zinssatz als auch die Wahrscheinlichkeiten liegen dabei normalerweise als Jahreswerte vor, die Zahlungen hingegen erfolgen meist unterjährlich. In der vorliegenden Arbeit wird für diesen unterjährlichen Fall ein auf der Theorie der Markov-Ketten basierendes Modell zur Barwertberechnung behandelt. Die unterjährlichen Wahrscheinlichkeiten ergeben sich dabei durch Linearisierung der Jahreswerte, als unterjährliches Zinsmodell wird die gemischte Verzinsung – alternativ mit dem relativen Zinssatz und dem konformen Zinssatz – betrachtet.
Die betriebliche Altersversorgung ist neben der gesetzlichen und der privaten Altersvorsorge eine der drei Säulen der Alterssicherung in Deutschland. Ende 2012 beliefen sich die Deckungsmittel der betrieblichen Altersversorgung in Deutschland auf 500,7 Milliarden Euro. Im Zeitraum 2009 bis 2011 hatten ca. 60% aller sozialversicherungspflichtigen Arbeitnehmer eine Anwartschaft auf betriebliche Altersversorgung. Mit Pensionsplänen sind aus Sicht der Unternehmen Risiken verbunden, die es zu erkennen, zu bewerten und zu steuern gilt. Wie ist der aktuelle Stand des Risikomanagements in der betrieblichen Altersversorgung in Deutschland? Dieser Frage ging das 4. FaRis & DAV-Symposium anhand ausgewählter Aspekte nach. Die Vorträge des Symposiums sind in diesem Konferenzband zusammengefasst.