Open Access
Refine
Year of publication
Document Type
- Working Paper (91)
- Report (56)
- Conference Proceeding (28)
- Book (21)
- Article (17)
- Other (9)
- Preprint (7)
- Doctoral Thesis (5)
Language
- German (169)
- English (61)
- Multiple languages (4)
Has Fulltext
- yes (234)
Keywords
- Versicherungswirtschaft (37)
- Forschungsbericht (21)
- Optimierung (20)
- Hochschuldidaktik (19)
- Risikomanagement (17)
- Versicherungsmathematik (14)
- Optimization (13)
- Forschung (11)
- Modellierung (9)
- Soft Computing (9)
Institute
- Fakultät 04 / Institut für Versicherungswesen (81)
- Fakultät für Informatik und Ingenieurwissenschaften (F10) (31)
- Fakultät 04 / Schmalenbach Institut für Wirtschaftswissenschaften (26)
- Zentrum für Lehrentwicklung (22)
- Fakultät 10 / Institut für Informatik (16)
- Fakultät 09 / Institut für Rettungsingenieurwesen und Gefahrenabwehr (13)
- Fakultät 02 / Köln International School of Design (10)
- Fakultät 05 / Institut für Baugeschichte und Denkmalpflege (8)
- Fakultät 07 / Institut für Nachrichtentechnik (5)
- Fakultät 01 / Institut für Sozialpolitik und Sozialmanagement (4)
While persons across the globe are increasingly leading longer lives, they are not necessarily leading healthier lives, particularly in old age. To support this, addressing the health and care needs of older adults and promoting healthy aging is vital - particularly in the wake of aging populations and the shortage of health care workers in many countries worldwide. Promoting both health literacy and self-care can support this, by empowering older adults to take a proactive stance regarding their health. Assistive technologies can provide support through health monitoring and facilitating self-management, and thus leveraging evidence-based strategies to directly support the well-being of older adults.
For a comprehensive and holistic assessment of health among older adults, a multidimensional approach which considers the physical, mental, social, and environmental health domains is crucial. Here, subjective data can provide insight into a person's well-being from their own point of view, and contribute context regarding their health status, while objective health data can be measured, observed, or self-reported and are based on facts or numbers. In this dissertation, we present a health monitoring system combining subjective and objective data related to the health and well-being of older adults. Such a system can encompass various health information technologies and assistive technologies to achieve comprehensive self-health monitoring: A social robot or virtual agent can autonomously conduct health assessments and thus collect subjective and objective health data, while various wearable and non-wearable sensors can acquire objective health data. Using the Design Science Research Methodology approach, we iteratively developed and evaluated this system, in order to both provide a technology to support health monitoring among older adults, whilst also providing knowledge on effective deployments of such systems in real-world settings.
Through four user studies with three cohorts of older adults from long-term care, assisted living, as well as community-dwelling older adults, we gained insight into factors influencing the deployment and adoption of health monitoring systems. To this end, we developed WiSH-TAM (in the wild social agent-integrated health-technology acceptance model), which can be used for integrating such systems into real-world settings. We also determined subjective and objective data sources to gain a comprehensive and holistic overview of the health of older adults. With these data sources we achieved high accuracies in classifying the health status of older adults, with a real-world dataset. We also presented text classification methods suitable to derive contextual health information from human-agent interactions. Combining these data with objective data, we showed that incorporating conversational data contributes to increasing the accuracy of health classifications, and that the conversational data can provide opportunities to support the health literacy and self-care of older adults. Building on the different settings and cohorts involved in our four studies, we gained insights into the potential of our system for these settings and users, and thus can conclude that the system is suitable for deployment in all these settings, provided the older adults are supported in this endeavor. Finally, the system also provides opportunities to support integrated care approaches, like the Integrated Care for Older People (ICOPE) approach proposed by the World Health Organization.
With these three outcomes, we have made contributions to the social scientific field of technology acceptance with the WiSH-TAM, to the intersection of machine learning and medicine with our health monitoring system and its health prediction capabilities, and to public health research through the proposed integration of the system into the ICOPE approach.
Dieser Sammelband vereinigt Beiträge zum Hochwasser, u.a. von Ende Oktober 2024 in Valencia, Spanien. Darüber hinaus aber auch Beiträge aus anderen von Hochwasser betroffenen Regionen in Italien, Mallorca, den Niederlanden, und ihren Erfahrungen. Er enthält einen Bericht einer gemeinsamen Begehung der in Valencia 2024 betroffenen Gebiete. Ein weiterer Beitrag vertieft die Praktiken und die Herausforderungen im Umgang mit dem Hochwasserabfall aus dem Ereignis und zeigt Ideen auf, wie man hier Synergien aus deut-schen und spanischen Erfahrungen schaffen könnte. Dazu dient dann auch eine gemeinsame Presseerklärung, die vor Ort durch die Zusammenarbeit der deutschen und spanischen Kollegen entstand. Auch werden Kernfragen für künftige Entscheidungen aufgezeigt. Ein weiterer Beitrag erläutert die rechtlichen Rah-men und Hintergründe zum Katastrophenmanagement in Spanien. Ein Leitfaden für vom Hochwasser betroffene Personen, Kommunen und Einsatzkräfte aus der Erfahrung verschiedener Hochwasserereignisse weltweit soll eine erste Orientierung und praktische Hilfe darstellen.
Das Promotionsprojekt ist interdisziplinär an der Schnittstelle von Mensch-Maschine-Interaktion und Coaching-Wirksamkeitsforschung angesiedelt. Im Rahmen des Projekts wird der Einfluss beziehungsbildender Faktoren auf die Beziehungsgestaltung im Chatbot-Coaching untersucht. Dabei wird die Domäne des Lern- und Studierenden-Coachings ausgewählt. Der Fokus liegt auf der empirischen Untersuchung von Rapport, Arbeitsbeziehung und sozialer Präsenz zwischen Coach und Coachee, also der Frage, ob und wie sich eine Beziehung zwischen Coaching-Chatbot und Coachee entwickelt. Dazu werden potentielle Wirkfaktoren (Self-disclosure, Empathie und User-Persönlichkeit) ausgewählt und aktuelle technologische Entwicklungen (Einsatz von generativer KI und Large-Language-Modellen) als mögliche Wirkfaktoren berücksichtigt.
In einem ersten Schritt wird literaturbasiert herausgearbeitet, welche Faktoren zur Gestaltung einer Beziehung aus der Coaching-Forschung und der Forschung zur Mensch-Maschine-Interaktion in einen Coaching-Chatbot übertragbar sind. Im zweiten Schritt werden diese Faktoren zu Handlungsanweisungen und Interventionsstrategien operationalisiert und in experimentellen Studien anhand von Hypothesen untersucht. Daraus lassen sich drittens Empfehlungen für Forschung und Praxis ableiten. Als übergreifender Forschungsansatz wird eine Verbindung von Design-based Research und experimenteller Forschung gewählt. Dies beinhaltet einen Mixed-Methods-Ansatz, der qualitative, quantitative und psychophysiologische Messmethoden berücksichtigt sowie Messmethoden und -instrumente kritisch beleuchtet.
Die Ergebnisse zeigen, dass die Faktoren (1) Self-disclosure des Chatbots, (2) empathische Rückmeldungen des Chatbots und (3) Paraphrasieren mit dem Large-Language-Modell ChatGPT-4 einen signifikanten Einfluss auf die Beziehungsbildung in der Domäne des Studierenden-Coachings mit Chatbots haben. Dabei zeigt sich der beziehungsbildende Effekt auf der Ebene der sozialen Präsenz, nicht auf der Ebene der Arbeitsbeziehung. Moderator- und Störvariablen (User-Persönlichkeit und emotionales Befinden der User) haben keinen Einfluss auf die Beziehungsbildung im Chatbot-Coaching. Konkrete Empfehlungen zum Conversation-Design und Prompting von Chatbots können auf struktureller und sprachlicher Ebene aus den Studien abgeleitet werden: Die Variation von klick- und schreibbasierter Interaktion, Text und Bild sowie Information und Selbstreflexion auf struktureller Ebene ist geeignet, um das Chatbot-Coaching abwechslungsreicher zu gestalten. Auf sprachlicher Ebene sollten Self-disclosure- und Information-disclosure-Aussagen variiert werden, ebenso wie empathische Rückmeldungen eines Chatbots eingebunden werden sollten. Darüber hinaus lassen sich Empfehlungen für die verantwortungsvolle Gestaltung von KI-basierten Coaching-Chatbots ableiten. Diese beinhalten die Entwicklung von hybriden Chatbots unter Berücksichtigung verschiedener Design-Ansätze, die Auswahl geeigneter Large-Language-Modelle für den jeweiligen Use Case, sorgfältiges Prompting als Teil des Conversation-Designs, eine intensivere Implementierung von generativer KI in Coaching-Chatbots sowie den Einsatz von sensorbasiertem Coaching.
Das Promotionsprojekt leistet damit einen substanziellen Beitrag zum (1) Conversation-Design und Prompting von Coaching-Chatbots, zum (2) verantwortungsvollen Einbezug generativer KI in das Chatbot-Coaching sowie zu (3) Messmethoden und -instrumenten zur Untersuchung der Beziehungsbildung im Chatbot-Coaching. Die Arbeit schließt mit einem Ausblick auf die Zukunft des KI-basierten Coachings und damit einhergehenden Thesen zur Gestaltung von KI-basierten Chatbots sowie zukünftigen Forschungsfeldern. Die Arbeit trägt damit zu Forschung und Entwicklung in den Bereichen gesprächsbasier-te KI, Rapport-Forschung in der Mensch-Maschine-Interaktion sowie angewandte Psychologie, Coaching-Wirksamkeitsforschung und Hochschuldidaktik bei.
Konstruktives, auf Leistungsverbesserung ausgerichtetes Feedback an Studierende ist entscheidend für die Entwicklung ihrer Kompetenzen und Fähigkeiten. Die vorliegende qualitative Panelstudie unterstreicht die Bedeutung von Feedback im Kontext der Reckwitz’schen Theorie des Strukturwandels in singularisierten Gesellschaften. Das vorgeschlagene PaNcaKe-Modell (positiv-negativ-konstruktiv) soll das traditionelle Sandwich-Modell ersetzen. Wiederholtes und integriertes Feedback zeigt ein großes Wirkungspotenzial, insbesondere durch zeitnahe Beurteilung, die den Erinnerungswert erhöht und das für die spätere Karriere wichtige Zeitmanagement erleichtert.
AI video generation models such as Open AI’s Sora make it possible to create ultra-realistic animations from scratch and seamlessly merge disparate visual content into new synthetic media. For its developers, however, Sora seems more than just a tool; they rather see it as a “world simulator.” But if Sora, trained on online video content scraped from YouTube or generated by game engines such as Unreal, is supposed to simulate a world, what world is it? As the short essay argues, it is a world of constant modulation and endless flows of patterns—a flat world, the world of platform capitalism.
The contribution by Pamela C. Scorzin discusses the intersection of artificial intelligence (AI) and the arts, focusing on whether AI can be creative or produce art. While AI lacks consciousness and common sense and cannot yet autonomously produce creative art, it can be used as a tool and medium by creatives to design, create, and realize projects. The author also considers the current convergence of robotics and AI, which is giving rise to humanoid robots that can behave like humans and imitate human expressions, interactions, and movements. Human-like robots are now being equipped with AI and incorporating GenAI or ChatGPT. This allows them to understand and respond to conversational cues and generate original outputs in their unique style. Some robot artists showcase their ‘creativity’ live on stage, sparking discussions about the essence of creativity and authorship.
This study explores the potential of generative AI, specifically Long Short-Term Memory (LSTM) networks, to advance collaborative choreographic composition within the framework of the Body Logic (BL) Method—a choreographic approach grounded in cognitive science designed to challenge inherited habits and practices in contemporary dance. Through five cognitive tasks that emphasize different movement types and their qualities, we investigate how LSTM networks recognize established movement patterns and innovate by combining them in novel ways, mirroring the processes of human creativity. Furthermore, we examine how LSTM-generated sequences, derived from learned data, convey expressive qualities through a variety of movements. The AI-generated movements closely follow the original movement trajectory but exhibit minor deviations attributable to the LSTM model’s inherent prediction uncertainty. These variations illustrate the model’s capability to introduce fresh elements while maintaining learned patterns, akin to human creativity. This research contributes novel perspectives on how technology can enrich artistic expression and challenge habitual decision-making in dance.
In light of the growing criticism and resistance mounted against digital technology and its proponents, the applied sciences need to adopt critical positions that draw from existing knowledge accumulated by current and historical critics and movements. Here, the contemporary abolitionist movement provides a particularly powerful framework to grasp the broader implications of technological development in the context of global racialized capitalism. This article proposes to adopt an abolitionist perspective in the applied sciences and to develop alternative modes of access to engineering and design based on a fundamental questioning and rejection of the established design paradigms developed under a neoliberal and capitalist status quo.
Text-to-image generative models offer an innovative method for creating visual content, exploiting the limitless potential of text-based inputs. However, the reliance on text prompts can lead to a labor-intensive process of experimentation for users aiming to achieve high-quality results. This has led to the development of a specialized prompt language with specific, descriptive keywords that users can exploit so as to achieve the best possible visual outcomes. Insight into prompting strategies can be obtained by analyzing the media generated and shared on text-to-image online platforms. Utilizing natural language processing (NLP) and visualization techniques, a detailed analysis of the prompts that led to the creation of images with exceptional popularity (by like count) was performed. The present study is focused on identifying the predominant topics and language patterns that contribute to the creation of images that receive high community ratings. Our analysis reveals a strong focus on surface aesthetics in prompts, which often emphasize conventional beauty and popular visual themes and a gravitation towards erotic and pornographic content. Positive prompts typically involve descriptions of female bodily features, blending elements of fantasy and realism. Negative prompts consistently counteract what seems to be perceived as visual imperfections, often describing body horror, marked by distorted human features as well as technical imperfections related to digital imagery in particular.
Psychedelic dreams, oddly-fingered hands, plausible yet disturbing alternative realities—generative AI systems have finally unleashed the weird. But in the process, haven’t they also normalized it? As a result, what we once considered weird is no longer so; instead, it has become a specific expression of classic kitsch. Let’s call it normie weird. If that’s the case, what happened to the real thing, what we could call weirdo weird, then? When one of the world’s leading tech companies releases a tool that produces crazy images reminiscent of a Max Ernst painting, something feels really strange. It’s not the images themselves, which we keep calling “surreal” to bring them back to something known and therefore reassuring. Instead, what’s truly weird might be cloaked in derivative, pictorial, ultimately visual aesthetics. It is behind a superficial layer of cute illustrations that lurks the non-human core of a sprawling statistical entity. This perspective confronts us with a haunting realization: that humanity itself is a kind of deep kitsch, and art, its greatest achievement, nothing but a shiny souvenir.