C Mathematical and Quantitative Methods
Refine
Document Type
- Article (2)
- Report (2)
- Working Paper (2)
Has Fulltext
- yes (6)
Keywords
- Optimierung (3)
- Bayesian Optimization (2)
- Benchmarking (2)
- BBOB (1)
- Cyber-physische Produktionssysteme (1)
- Event Detection (1)
- Evolutionsstrategie (1)
- Evolutionärer Algorithmus (1)
- Genetische Algorithmen (1)
- Genetisches Programmieren (1)
Die Arbeit beschreibt die Entwicklung und Verbreitung künstlicher Intelligenz (KI) und die damit verbundenen Herausforderungen und Chancen. Es wird hervorgehoben, dass trotz des offensichtlichen Nutzens von KI, Bedenken hinsichtlich unerwünschter Nebenwirkungen durch fehlerhafte oder missbräuchliche Anwendungen bestehen. Um diese Herausforderungen zu bewältigen, wird ein Ansatz vorgeschlagen, der als “konviviale künstliche Intelligenz” bezeichnet wird. Dieser Ansatz zielt auf ein harmonisches Zusammenspiel zwischen KI und Mensch ab und betont die Notwendigkeit einer menschenzentrierten Gestaltung bei der Entwicklung und Implementierung von KI-Modellen.
Die steigende Komplexität der Produktionssysteme, insbesondere im Maschinenbau, führt zu einer Belastung für Automatisierer und Anlagenbauer. Um dieser Belastung entgegenzuwirken, bietet Industrie 4.0 mit Cyber-physischen Systemen und intelligenten Automatisierungssystemen eine Lösung. Dabei wird menschliches Expertenwissen in die Automatisierung verlagert, indem Ziele deklarativ formuliert werden, anstatt prozedurale Handlungsabläufe zu beschreiben. Dieser Ansatz ermöglicht es intelligenten Systemen, ausreichenden Handlungsspielraum zu haben und den menschlichen Aufwand bei der Optimierung, Inbetriebnahme und Anlagenumbau zu reduzieren. Um intelligente Automation umzusetzen, werden neue Automatisierungstechniken und Software-Services benötigt, die verschiedene Methoden wie maschinelles Lernen, Condition-Monitoring und Diagnose-Algorithmen sowie Optimierungsverfahren nutzen. Derzeit werden diese Services unabhängig voneinander implementiert und die Schnittstellen sind oft proprietär, was den Austausch von Daten, Modellen und Ergebnissen erschwert. Dennoch strebt Industrie 4.0 die Zusammenarbeit von Geräten und Komponenten unterschiedlicher Hersteller an. Als ein Lösungsansatz wurde in diesem Projekt eine kognitive Referenzarchitektur entwickelt, welche die genannten Punkte adressiert.
Many black-box optimization problems rely on simulations to evaluate the quality of candidate solutions. These evaluations can be computationally expensive and very time-consuming. We present and approach to mitigate this problem by taking into consideration two factors: The number of evaluations and the execution time. We aim to keep the number of evaluations low by using Bayesian optimization (BO) – known to be sample efficient– and to reduce wall-clock times by executing parallel evaluations. Four parallelization methods using BO as optimizer are compared against the inherently parallel CMA-ES. Each method is evaluated on all the 24 objective functions of the Black-Box-Optimization-Benchmarking test suite in their 20-dimensional versions. The results show that parallelized BO outperforms the state-of-the-art CMA-ES on most of the test functions, also on higher dimensions.
An important class of black-box optimization problems relies on using simulations to assess the quality of a given candidate solution. Solving such problems can be computationally expensive because each simulation is very time-consuming. We present an approach to mitigate this problem by distinguishing two factors of computational cost: the number of trials and the time needed to execute the trials. Our approach tries to keep down the number of trials by using Bayesian optimization (BO) –known to be sample efficient– and reducing wall-clock times by parallel execution of trials. We compare the performance of four parallelization methods and two model-free alternatives. Each method is evaluated on all 24 objective functions of the Black-Box-Optimization- Benchmarking (BBOB) test suite in their five, ten, and 20-dimensional versions. Additionally, their performance is investigated on six test cases in robot learning. The results show that parallelized BO outperforms the state-of-the-art CMA-ES on the BBOB test functions, especially for higher dimensions. On the robot learning tasks, the differences are less clear, but the data do support parallelized BO as the ‘best guess’, winning on some cases and never losing.
Verunreinigungen im Wassernetz können weite Teile der Bevölkerung unmittelbar gefährden. Gefahrenpotenziale bestehen dabei nicht nur durch mögliche kriminelle Handlungen und terroristische Anschläge. Auch Betriebsstörungen, Systemfehler und Naturkatastrophen können zu Verunreinigungen führen.
Ziel des Forschungsprojektes "Mehrkriterielle CI-basierte Optimierungsverfahren für den industriellen Einsatz" (MCIOP) war die Verringerung von Schadstoffemissionen in Kohlekraftwerken. Der wissenschaftliche Fokus lag auf der Entwicklung von Methoden, die in der Lage sind, interpretierbare Modelle für die Schadstoffemissionen automatisch zu generieren. Hierzu wurden mehrkriterielle Optimierungsverfahren entwickelt und eingesetzt. Zur Zeit- und Kostenreduktion wurde die Optimierung durch Surrogat-Modelle erfolgen, die abgestuft mit aufwändigeren Simulationen zum Einsatz kamen („optimization via simulation“). Bei der Untersuchung von Staubabscheidern konnten durch eine mehrkriterielle Optimierung unterschiedliche Zielgrößen, wie z.B. Abscheidegrad und Druckverlust, gleichzeitig berücksichtigt werden.
Dieser Bericht beschreibt die im Projekt MCIOP im Zeitraum von August 2011 bis einschließlich Juni 2015 erzielten Ergebnisse.