G22 Insurance; Insurance Companies
Refine
Year of publication
Document Type
- Working Paper (44)
- Conference Proceeding (21)
- Report (14)
- Preprint (1)
Has Fulltext
- yes (80)
Keywords
- Versicherungswirtschaft (34)
- Versicherungsmathematik (13)
- Forschungsbericht (10)
- Risikomanagement (9)
- Versicherung (9)
- Forschung (8)
- Rückversicherung (8)
- Institut für Versicherungswesen (6)
- Schadenversicherung (6)
- Solvency II (6)
Unternehmen sehen sich üblicherweise den unterschiedlichsten operativen und strategischen Risiken ausgesetzt. Daher ist das Risikoportfolio eines Unternehmens aus Sicht des betriebswirtschaftlichen Risikomanagement i.d.R. sehr inhomogen bezüglich der verwendeten Verteilungsmodelle. Neben der Bewertung der Einzelrisiken ist es die Aufgabe des quantitativen Risikomanagements, alle Einzelrisiken in einer Risikokennzahl (z.B. Value at Risk oder Expected Shortfall) zu aggregieren. Dazu werden Szenarien (mit einer Monte-Carlo-Simulation) simuliert, so dass die Verteilung des Gesamtrisikos mit Risikokennzahlen aggregiert und analysiert werden kann. Dabei muss zusätzlich die Abhängigkeitsstruktur der Einzelrisiken modelliert werden. Ein möglicher Ansatz zur Modellierung der Abhängigkeitsstruktur ist die Vorgabe einer Korrelationsmatrix. Der vorliegende Artikel beschäftigt anhand von Beispielen zum einen mit Konzepten und Methoden einer solchen Modellierung und zum anderen mit den Schwierigkeiten, die damit verbunden sind. Es zeigt sich, dass man bei der Wahl einer Korrelationsmatrix verschiedene Einschränkungen zu beachten hat. Ferner kann es zu einer vorgegebenen Korrelationsmatrix mehrere passende gemeinsame Verteilungen der Einzelrisken geben. Dies hat zur Folge, dass die Aggregation der Einzelrisiken in einer Risikokennzahl aus mathematischer Sicht nicht eindeutig ist.
Mit diesem Bericht dokumentiert das Institut für Versicherungswesen (ivwKöln) seine Forschungsaktivitäten des vergangenen Jahres. Wir geben damit gegenüber der Öffentlichkeit und insbesondere den Freunden und Förderern des Instituts Rechenschaft über die geleistete Forschungsarbeit. Darüber hinaus wollen wir in diesem Forschungsbericht auch darlegen, welche Forschungsziele wir am Institut verfolgen und welche Aktivitäten derzeit geplant sind.
Markov-Ketten haben bei der Modellierung von ökonomischen Sachverhalten eine Vielzahl von Anwendungen. In den Wirtschaftswissenschaften steht oft ein Portfolio von Markov -Ketten im Mittelpunkt des Interesses, z.B. das Kreditportfolio einer Bank oder das Vertragsportfolio einer Versicherung. In den meisten Modellen wird dabei die stochastische Unabhängigkeit der unterschiedlichen Markov-Ketten vorausgesetzt. In der vorliegenden Arbeit wird ein Modell zur Berücksichtigung einer Abhängigkeitsstruktur in einem solchen Portfolio vorgestellt. Die Abhängigkeiten werden dabei mit einer Familie von Copulas modelliert und werden bei den Übergangsmatrizen berücksichtigt.
Mit diesem Bericht dokumentiert das Institut für Versicherungswesen (ivwKöln) seine Forschungsaktivitäten des vergangenen Jahres. Wir geben damit gegenüber der Öffentlichkeit und insbesondere den Freunden und Förderern des Instituts Rechenschaft über die geleistete Forschungsarbeit. Darüber hinaus wollen wir in diesem Forschungsbericht auch darlegen, welche Forschungsziele wir am Institut verfolgen und welche Aktivitäten derzeit geplant sind.
In 2021 feiert die Technische Hochschule Köln (TH Köln) ihr 50-jähriges Jubiläum und damit auch das Institut für Versicherungswesen (ivwKöln), wobei sich inzwischen Forschung, Lehre und Transfer in die Praxis auf alle Risikofelder des Versicherungsgeschäfts und alle Kompetenzbereiche der Versicherungsunternehmen beziehen. Anlässlich dieses Jubiläums hat das ivwKöln daher in einem Band „Risiko im Wandel. Herausforderung für die Versicherungswirtschaft“, der in 2022 als Open Access erscheinen wird, die Vielfalt von Forschung und Praxis aller Mitwirkenden an der Arbeit des Institutes gebündelt zusammengefasst. Der nachfolgende Beitrag soll schon vorab einen Überblick der verschiedenen Forschungsthemen geben.
Über mathematische Methoden und Verfahren der Künstlichen Intelligenz wird auch in der Versicherungsbranche und speziell in den Aktuarwissenschaften zunehmend intensiver diskutiert. Dazu zählen insbesondere auch Themen des Risikomanagements der Unternehmen. Bedeutende Aspekte sind dabei die Risikomessung, die Risikobeurteilung sowie die Risikokommunikation im Zuge von Solvency II. Vor diesem Hintergrund widmen wir das 15. FaRis-Symposium der Künstlichen Intelligenz im Risikomanagement. Unsere Referenten berichten in ihren Vorträgen von verschiedenen Projekten, in denen sie Künstliche Intelligenz im Risikomanagement erfolgreich eingesetzt haben. Sie referieren über Chancen und Herausforderungen sowie über zukünftige Themenfeldern der Aktuarinnen und Aktuare in Deutschland.
Mit diesem Bericht dokumentiert das Institut für Versicherungswesen (ivwKöln) seine Forschungsaktivitäten des vergangenen Jahres. Wir geben damit gegenüber der Öffentlichkeit und insbesondere den Freunden und Förderern des Instituts Rechenschaft über die geleistete Forschungsarbeit. Darüber hinaus wollen wir in diesem Forschungsbericht auch darlegen, welche Forschungsziele wir am Institut verfolgen und welche Aktivitäten derzeit geplant sind.
In den Wirtschaftswissenschaften werden Risiken häufig mit dichotomen Zufallsvariablen modelliert. In der vorliegenden Arbeit wird an Fallbeispielen untersucht, unter welchen Bedingungen für das Gesamtrisiko eines inhomogenen Portfolios von stochastisch unabhängigen dichotomen Risiken näherungsweise von einer Normalverteilung ausgegangen werden kann. Die Normalverteilung ergibt sich aus dem zentralen Grenzwert. Die Approximation mit der Normalverteilung wird dabei auch mit der Näherung durch eine zusammengesetzte Poisson-Verteilung verglichen.
Die Frage, ob Big Data und Künstliche Intelligenz (KI) die Versicherungswirtschaft revolutionieren, beschäftigt schon seit einiger Zeit unsere Gesellschaft sowie im Besonderen die Versicherungsbranche. Die Fortschritte in jüngster Vergangenheit in der KI und bei der Auswertung großer Datenmengen sowie die große mediale Aufmerksamkeit sind immens. Somit waren Big Data und Künstliche Intelligenz auch die diesjährigen vielversprechenden Themen des 24. Kölner Versicherungs-
symposiums der TH Köln am 14. November 2019: Das ivwKöln hatte zum fachlichen Austausch eingeladen, ein attraktives Vortragsprogramm zusammengestellt und Networking-Gelegenheiten für die Gäste aus Forschung und Praxis vorbereitet. Der vorliegende Proceedings-Band umfasst die Vortragsinhalte der verschiedenen Referenten.
Die Risikowahrnehmung von Bürgern und Verbrauchern weicht aufgrund von psychologischen Verzerrungseffekten in vielen Fällen deutlich von den realen Risiken ab, was zu „irrationalen“ Entscheidungen und ungeeignetem Vorsorgen und Versichern führen kann. Ziel der Studie ist es, solche Abweichungen in der Wahrnehmung von alltäglichen Risiken in der deutschen Bevölkerung aufzuzeigen. Im Wege einer empirischen Untersuchung wurde daher repräsentativ erhoben, wie unterschiedliche Risiken aus den drei Lebensbereichen „Auto und Mobilität“, „Eigentum, Beruf und Familie“ sowie „Gesundheit und Leben“ in der Bevölkerung eingeschätzt werden. Der subjektiven Risikowahrnehmung werden dann die entsprechenden statistischen Eintrittswahrscheinlichkeiten gegenüber gestellt.
Im Ergebnis zeigt sich, dass die Wahrscheinlichkeit seltener Ereignissemeist überschätzt wird. Das gilt wiederum insbesondere für „medienwirksame“ Ereignisse wie tödliche Verkehrsunfälle oder die Gefahr durch Terroranschläge. Häufigere Ereignisse werden dagegen eher unterschätzt. Neben Sachschäden oder Eigentumsdelikten gilt dies insbesondere für Brand-und Leitungswasserschäden. Besonders auffällig ist zudem die Unterschätzung der Häufigkeit von Rechtsfällen. Bezogen auf die eigene Person im Vergleich zur Betroffenheit in der Bevölkerung, werden Terrorgefahren, tödliche Verkehrsunfälle und Computerkriminalität als besonders hoch eingeschätzt. Kontakt mit dem Gesetz –sei es ein Verlust der Fahrerlaubnis, einer Straftat verdächtigt zu werden oder in einen zivilen Rechtsstreit verwickelt zu werden, betrifft hingegen eher die Bevölkerung allgemein und damit „die Anderen“. Auch Erfahrungen im persönlichen Umfeld spielen eine wichtige Rolle, indem die eigene Gefährdung als deutlich höher eingeschätzt wird. Das gilt in besonderem Maße für Ereignisse, die ansonsten als sehr unwahrscheinlich angesehen werden (z.B. tödlicher Flugzeugunfall, tödliches Gewaltverbrechen, Straftatverdacht), aber auch für Berufsunfähigkeits-sowie Krankheitsrisiken.